ARAstar java实现
时间: 2023-10-14 08:18:58 浏览: 81
人工智能 AStar 算法 Java实现
ARA*(Anytime Repairing A*)是 A* 算法的一种改进,可以在保证最优解的情况下尽可能快地找到一个解,同时还可以在有更多时间时继续优化这个解。
下面是 ARA* 的 Java 实现:
```java
public class ARAStar {
private final double epsilon; // 节点评估值系数
private final HeuristicFunction heuristicFunction; // 启发式函数
private final Map<Node, Double> gCosts; // 节点到起点的实际代价
private final Map<Node, Double> rhsCosts; // 节点到终点的实际代价
private final PriorityQueue<Node> openList; // 开放列表
private final Set<Node> closedList; // 封闭列表
public ARAStar(double epsilon, HeuristicFunction heuristicFunction) {
this.epsilon = epsilon;
this.heuristicFunction = heuristicFunction;
this.gCosts = new HashMap<>();
this.rhsCosts = new HashMap<>();
this.openList = new PriorityQueue<>(Comparator.comparingDouble(this::getF));
this.closedList = new HashSet<>();
}
public List<Node> search(Node start, Node goal) {
initialize(start, goal);
while (!openList.isEmpty() && getF(openList.peek()) < getF(goal)) {
Node current = openList.poll();
closedList.add(current);
if (isGoal(current, goal)) {
return reconstructPath(start, goal);
}
updateVertex(current, goal);
for (Node neighbor : current.getNeighbors()) {
if (!closedList.contains(neighbor)) {
updateVertex(neighbor, goal);
if (!openList.contains(neighbor)) {
openList.offer(neighbor);
}
}
}
}
return reconstructPath(start, goal);
}
private void initialize(Node start, Node goal) {
gCosts.clear();
rhsCosts.clear();
openList.clear();
closedList.clear();
gCosts.put(start, 0.0);
rhsCosts.put(start, heuristicFunction.estimate(start, goal));
openList.offer(start);
}
private double getF(Node node) {
return Math.min(gCosts.get(node), rhsCosts.get(node)) + epsilon * heuristicFunction.estimate(node, getGoal());
}
private boolean isGoal(Node node, Node goal) {
return node.equals(goal);
}
private void updateVertex(Node node, Node goal) {
if (node.equals(goal)) {
return;
}
double g = getMinG(node);
gCosts.put(node, g);
if (openList.contains(node)) {
openList.remove(node);
}
if (!isConsistent(node)) {
rhsCosts.put(node, g + heuristicFunction.estimate(node, goal));
}
if (openList.contains(node)) {
openList.offer(node);
}
}
private double getMinG(Node node) {
return node.getNeighbors().stream()
.mapToDouble(neighbor -> gCosts.getOrDefault(neighbor, Double.POSITIVE_INFINITY) + node.getCost(neighbor))
.min().orElse(Double.POSITIVE_INFINITY);
}
private boolean isConsistent(Node node) {
return rhsCosts.get(node).equals(gCosts.get(node));
}
private List<Node> reconstructPath(Node start, Node goal) {
List<Node> path = new ArrayList<>();
Node current = goal;
while (!current.equals(start)) {
path.add(current);
current = current.getParent();
}
path.add(start);
Collections.reverse(path);
return path;
}
private Node getGoal() {
return rhsCosts.entrySet().stream()
.min(Map.Entry.comparingByValue())
.map(Map.Entry::getKey)
.orElseThrow(IllegalStateException::new);
}
}
```
其中,`Node` 类表示图中的节点,`HeuristicFunction` 接口表示启发式函数,其 `estimate` 方法用于估计节点到目标节点的代价。
使用时,可以先定义一个 `HeuristicFunction` 实现类:
```java
public class EuclideanDistance implements HeuristicFunction {
@Override
public double estimate(Node node, Node goal) {
double dx = node.getX() - goal.getX();
double dy = node.getY() - goal.getY();
return Math.sqrt(dx * dx + dy * dy);
}
}
```
然后,可以使用以下代码进行搜索:
```java
ARAStar araStar = new ARAStar(1.0, new EuclideanDistance());
List<Node> path = araStar.search(startNode, goalNode);
```
其中,第一个参数是节点评估值系数,第二个参数是启发式函数。`search` 方法返回搜索结果路径。
阅读全文