import numpy as np # 定义坐标信息 points = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # 生成所有点两两组合的向量 x, y, z = np.meshgrid(points[:, 0], points[:, 1], points[:, 2], indexing='ij') vectors = np.stack((x.ravel(), y.ravel(), z.ravel()), axis=1) - np.stack((x.ravel(), y.ravel(), z.ravel()), axis=0) # 判断每个向量是否平行于x-y面、x-z面或y-z面 parallel_xy = np.abs(vectors[:, 2]) < 1e-10 parallel_xz = np.abs(vectors[:, 1]) < 1e-10 parallel_yz = np.abs(vectors[:, 0]) < 1e-10 # 输出结果 print("平行于x-y面的向量:") print(vectors[parallel_xy]) print("平行于x-z面的向量:") print(vectors[parallel_xz]) print("平行于y-z面的向量:") print(vectors[parallel_yz])

时间: 2024-02-29 11:56:12 浏览: 23
这段代码的作用是生成给定坐标信息的所有点两两之间的向量,并判断每个向量是否平行于x-y面、x-z面或y-z面,最后输出符合条件的向量。 具体来说,代码使用numpy库中的meshgrid函数生成三维网格,即将所有坐标信息的x、y、z分别组成三个数组,并使用stack函数将三个数组合并成一个三维数组。然后,代码使用ravel函数将三维数组转化为一维数组,并使用stack函数将两个一维数组合并成一个二维数组。最后,代码使用差运算得到所有向量,并使用abs函数求出向量在x、y、z三个轴上的分量的绝对值,判断每个向量是否平行于x-y面、x-z面或y-z面。 最后,代码使用print函数输出符合条件的向量。 需要注意的是,代码中判断向量是否平行于某个面的条件使用了一个很小的数1e-10,这是由于浮点数计算的精度问题可能导致实际上非常接近于0的数被误判为不等于0。
相关问题

输入并运行下列程序,查看运行结果并提交,自行查阅文档并写出各部分代码的功能: import matplotlib.pyplot as plt import numpy as np #plot 1: xpoints = np.array([0, 6]) ypoints = np.array([0, 100]) plt.subplot(1, 2, 1) plt.plot(xpoints,ypoints) plt.title("plot 1") #plot 2: x = np.array([1, 2, 3, 4]) y = np.array([1, 4, 9, 16]) plt.subplot(1, 2, 2) plt.plot(x,y) plt.title("plot 2") plt.suptitle("绘制子图") plt.show()

这段代码使用了Matplotlib库来绘制两个子图。下面逐行进行解释: ```python import matplotlib.pyplot as plt import numpy as np # plot 1: xpoints = np.array([0, 6]) ypoints = np.array([0, 100]) plt.subplot(1, 2, 1) # 设置子图的位置 plt.plot(xpoints, ypoints) # 绘制线条 plt.title("plot 1") # 设置子图标题 # plot 2: x = np.array([1, 2, 3, 4]) y = np.array([1, 4, 9, 16]) plt.subplot(1, 2, 2) # 设置子图的位置 plt.plot(x, y) # 绘制线条 plt.title("plot 2") # 设置子图标题 plt.suptitle("绘制子图") # 设置整个图的标题 plt.show() # 展示图像 ``` 第1行和第2行导入了需要用到的Matplotlib和Numpy库。 第5行和第6行初始化第一个子图的x轴和y轴坐标点,x轴坐标为0和6,y轴坐标为0和100。 第7行通过`plt.subplot()`函数指定第一个子图的位置,`(1, 2, 1)`表示子图在一行两列的布局中占用第1个位置。 第8行使用`plt.plot()`函数绘制第一个子图的线条。 第9行使用`plt.title()`函数设置第一个子图的标题。 第12行和第13行初始化第二个子图的x轴和y轴坐标点,x轴坐标为1、2、3、4,y轴坐标为1、4、9、16。 第14行通过`plt.subplot()`函数指定第二个子图的位置,`(1, 2, 2)`表示子图在一行两列的布局中占用第2个位置。 第15行使用`plt.plot()`函数绘制第二个子图的线条。 第16行使用`plt.title()`函数设置第二个子图的标题。 第18行使用`plt.suptitle()`函数设置整个图的标题。 最后一行使用`plt.show()`函数展示图像。

优化 import numpy as np import open3d as o3d from sklearn.cluster import DBSCAN # 读取点云数据 pcd = o3d.io.read_point_cloud("laser.pcd") points = np.asarray(pcd.points) # DBSCAN聚类 dbscan = DBSCAN(eps=0.2, min_samples=10) dbscan.fit(points) labels = dbscan.labels_ # 获取可行驶区域点云数据 drivable_mask = labels != -1 drivable_points = points[drivable_mask] # 获取路沿点云数据 curb_mask = np.logical_and(labels != -1, points[:, 1] < 0) curb_points = points[curb_mask] # 获取车道线点云数据 line_mask = np.logical_and(labels != -1, points[:, 1] >= 0) line_points = points[line_mask] # 可视化结果 drivable_pcd = o3d.geometry.PointCloud() drivable_pcd.points = o3d.utility.Vector3dVector(drivable_points) o3d.visualization.draw_geometries([drivable_pcd]) curb_pcd = o3d.geometry.PointCloud() curb_pcd.points = o3d.utility.Vector3dVector(curb_points) o3d.visualization.draw_geometries([curb_pcd]) line_pcd = o3d.geometry.PointCloud() line_pcd.points = o3d.utility.Vector3dVector(line_points) o3d.visualization.draw_geometries([line_pcd]) 加上预处理

import numpy as np import open3d as o3d from sklearn.cluster import DBSCAN # 读取点云数据 pcd = o3d.io.read_point_cloud("laser.pcd") points = np.asarray(pcd.points) # 预处理:去除离群点 mean = np.mean(points, axis=0) std = np.std(points, axis=0) inlier_mask = np.all(np.abs(points - mean) < 2 * std, axis=1) points = points[inlier_mask] # DBSCAN聚类 dbscan = DBSCAN(eps=0.2, min_samples=10) dbscan.fit(points) labels = dbscan.labels_ # 获取可行驶区域点云数据 drivable_mask = labels != -1 drivable_points = points[drivable_mask] # 获取路沿点云数据 curb_mask = np.logical_and(labels != -1, points[:, 1] < 0) curb_points = points[curb_mask] # 获取车道线点云数据 line_mask = np.logical_and(labels != -1, points[:, 1] >= 0) line_points = points[line_mask] # 可视化结果 drivable_pcd = o3d.geometry.PointCloud() drivable_pcd.points = o3d.utility.Vector3dVector(drivable_points) o3d.visualization.draw_geometries([drivable_pcd]) curb_pcd = o3d.geometry.PointCloud() curb_pcd.points = o3d.utility.Vector3dVector(curb_points) o3d.visualization.draw_geometries([curb_pcd]) line_pcd = o3d.geometry.PointCloud() line_pcd.points = o3d.utility.Vector3dVector(line_points) o3d.visualization.draw_geometries([line_pcd])

相关推荐

修改代码使其能够正确运行。import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import MinMaxScaler import cv2 import open3d as o3d from skimage import color import colour from scipy.spatial import ConvexHull def convert_data(data): res=[] data=data.tolist() for d in data: res.append(tuple(d)) # print(res) return res def load_data_and_plot_scatter(path1="1号屏srgb+rgb16预热10分钟切换0.5s.csv"): df1 = pd.read_csv(path1)[["X", "Y", "Z", "R", "G", "B"]] X1 = df1["X"].values Y1 = df1["Y"].values Z1 = df1["Z"].values df1_c = df1[["R", "G", "B"]].values / 255.0 XYZT = np.array([X1,Y1,Z1]) XYZ = np.transpose(XYZT) ABL = colour.XYZ_to_Lab(XYZ) LABT = np.array([ABL[:,1], ABL[:,2], ABL[:,0]]) LAB = np.transpose(LABT) # 将 numpy 数组转换为 open3d 中的 PointCloud 类型 pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(LAB) # 估计点云法向量 pcd.estimate_normals() # 计算点云的凸包表面 mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(pcd, alpha=0.1) mesh.compute_vertex_normals() # 获取凸包表面上的点的坐标 surface_points = np.asarray(mesh.vertices) # 显示点云的凸包表面 o3d.visualization.draw_geometries([mesh]) # 创建一个 3D 坐标 fig = plt.figure() # ax = Axes3D(fig) ax = plt.axes(projection='3d') ax.scatter(LAB[:,0], LAB[:,1], LAB[:,2], c=df1_c) # # 设置坐标轴标签 ax.set_xlabel('a* Label') ax.set_ylabel('b* Label') ax.set_zlabel('L Label') # 显示图形 plt.show() if __name__ == "__main__": load_data_and_plot_scatter()

最新推荐

recommend-type

SecondactivityMainActivity.java

SecondactivityMainActivity.java
recommend-type

mmexport1719207093976.jpg

mmexport1719207093976.jpg
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到