用mathematica写一个,求解商旅问题的程序
时间: 2023-10-07 12:10:47 浏览: 87
基于使用蚁群算法求解TSP商旅问题的最短访问路线源码.zip
以下是用Mathematica编写的商旅问题求解程序,基于遗传算法:
(*定义城市数量*)
cityNum = 10;
(*定义城市坐标*)
cityPos = RandomReal[{-10, 10}, {cityNum, 2}];
(*定义初始种群数量*)
popNum = 100;
(*定义遗传算法参数*)
generationNum = 100;
mutationProb = 0.1;
crossoverProb = 0.8;
(*定义目标函数:计算旅行代价*)
travelCost[route_] := Total[EuclideanDistance @@@ Partition[cityPos[[route]], 2, 1, 1]];
(*定义交叉函数:将两个个体进行交叉操作*)
crossover[parent1_, parent2_] := Module[{pos, child1, child2},
pos = RandomInteger[{1, cityNum - 1}];
child1 = Join[parent1[[1 ;; pos]], Complement[parent2, parent1[[1 ;; pos]]]];
child2 = Join[parent2[[1 ;; pos]], Complement[parent1, parent2[[1 ;; pos]]]];
{child1, child2}
];
(*定义变异函数:随机交换两个城市的位置*)
mutation[individual_] := Module[{pos1, pos2},
{pos1, pos2} = RandomSample[Range[cityNum], 2];
ReplacePart[individual, {pos1 -> individual[[pos2]], pos2 -> individual[[pos1]]}]
];
(*定义选择函数:根据旅行代价排序,选择前一半个体*)
selection[population_] := SortBy[population, travelCost][[1 ;; popNum/2]];
(*定义初始化种群*)
initialPopulation = Table[RandomSample[Range[cityNum]], popNum];
(*定义主程序*)
result = Nest[Module[{parents, offspring},
parents = RandomSample[selection[#], 2];
If[RandomReal[] < crossoverProb,
offspring = crossover @@ parents,
offspring = parents;
];
offspring = If[RandomReal[] < mutationProb,
mutation /@ offspring,
offspring
];
Join[#, offspring]
] &, initialPopulation, generationNum];
bestRoute = SortBy[result, travelCost][[1]];
bestCost = travelCost[bestRoute];
(*输出结果*)
Print["最优路径:", bestRoute];
Print["最优代价:", bestCost];
ListLinePlot[Append[cityPos[[bestRoute]], First[cityPos[[bestRoute]]]],
PlotStyle -> {Red, PointSize[Large]},
AspectRatio -> Automatic,
ImageSize -> 500,
Axes -> False,
Frame -> True,
FrameTicks -> None,
Background -> Black,
Epilog -> {White, Text[Style["Traveling Salesman Problem", 20, Bold], Scaled[{0.5, 0.95}]]}
]
]
阅读全文