x(t+1)=2x(t)+u(t),y(t)=-2x(t-k),其中k是小于4个采样周期的未知延时,用Matlab绘制该系统的增广后的矩阵的谱半径随时延k大小变化情况

时间: 2023-06-16 16:04:08 浏览: 76
根据题目给出的系统模型,可以将其写成增广矩阵的形式: ``` [x(t+1)] [2 1][x(t)] [u(t)] [y(t)] = [-2 0][x(t-k)] [0 ] ``` 其中,`x(t)` 和 `x(t+1)` 是状态向量,`u(t)` 是控制向量,`y(t)` 是输出向量,矩阵 `[2 1;-2 0]` 是增广矩阵。 为了绘制谱半径随时延 `k` 大小变化的情况,需要先确定谱半径的计算方法。对于一个矩阵 `A`,它的谱半径定义为其所有特征值的模的最大值,即: ``` rho(A) = max(|lambda|),其中 lambda 是矩阵 A 的特征值 ``` 因此,我们需要先计算出增广矩阵的特征值,并取其模的最大值作为谱半径。 根据题目中给出的系统模型,可以得到其特征多项式为: ``` det(lambda*I - [2 1; -2 0]) = lambda^2 - 2*lambda - 2 ``` 解特征多项式得到特征值为: ``` lambda1 = 1 + sqrt(3) lambda2 = 1 - sqrt(3) ``` 因此,增广矩阵的特征值模为: ``` |lambda1| = 2.732 |lambda2| = 0.268 ``` 可以发现,特征值 `lambda1` 的模大于特征值 `lambda2` 的模,因此增广矩阵的谱半径为 `2.732`。 接下来,我们需要编写 Matlab 代码来绘制谱半径随时延 `k` 大小变化的情况。具体实现步骤如下: 1. 定义增广矩阵 `A` 和控制向量 `B`: ``` A = [2 1; -2 0]; B = [1; 0]; ``` 2. 定义时间延迟 `k` 的范围: ``` k_range = 0:3; ``` 3. 定义一个长度为 `4` 的状态向量 `x` 和输出向量 `y`,并初始化为零向量: ``` x = zeros(2, 4); y = zeros(1, 4); ``` 4. 循环遍历时间延迟 `k` 的范围,计算增广矩阵的 `k` 步转移矩阵 `Ak` 和控制向量的 `k` 步转移矩阵 `Bk`: ``` for i = 1:length(k_range) k = k_range(i); Ak = eye(2); for j = 1:k Ak = Ak * A; end Bk = zeros(2, k+1); Bk(:, end) = B; end ``` 5. 计算 `Ak` 和 `Bk` 的乘积 `AB`,并计算其特征值的模的最大值作为谱半径 `rho`: ``` AB = Ak * [x(:, end); Bk]; rho(i) = max(abs(eig(AB))); ``` 6. 绘制谱半径随时间延迟 `k` 变化的曲线: ``` plot(k_range, rho); xlabel('Time Delay k'); ylabel('Spectral Radius'); title('Spectral Radius vs. Time Delay'); ``` 完整的 Matlab 代码如下:
阅读全文

相关推荐

import numpy as np import sympy as sp import math #define 时间步长空间步长 time_1 = 0.25 space_1 = 0.25 ht1 = int(1 / time_1) hs1 = int(1 / space_1) ht = ht1 + 1 hs = hs1 + 1 #定义出边界条件对应的函数并且把他的值放到数组里面去 x = sp.symbols("x") y = sp.symbols("y") t = sp.symbols("t") def u_text(x,y,t): return 20 + 80 * (y - np.exp(-0.5*math.pi*math.pi*t)*np.sin(math.pi/2*y)*np.sin(math.pi/2*x)) def u_t0(x,y,t): return 0 def u_x0(x,y,t): return 20 + 80 * y def u_x1(x,y,t): return 20 + 80 * (y - np.exp(-0.5*math.pi*math.pi*t)*np.sin(math.pi/2*y)) def u_y0(x,y,t): return 20 def u_y1(x,y,t): return 20 + 80 * (1 - np.exp(-0.5*math.pi*math.pi*t)*np.sin(math.pi/2*x)) u = np.zeros((ht, hs, hs)) u_cen = np.zeros((ht1, hs, hs)) u_1 = np.zeros((ht, hs, hs))#测试数组 #测试数组值 for i in range(ht): for h in range(hs): for k in range(hs): u_1[i][h][k] = u_text(h*space_1,k*space_1,i*time_1) print(u_1) #边值条件放进数组中 for i in range(ht): for j in range(hs): u[i][hs-1][j] = u_x1(j*space_1, j*space_1, i*time_1) u[i][j][hs-1] = u_y1(j*space_1, j*space_1, i*time_1) u[i][0][j] = u_x0(0, j*space_1, i*time_1) u[:, :, 0] = 20 #print(u) #ADI格式求解 #先对中间值的边界条件确定 aerf_x = time_1 / (2 * space_1 * space_1) aerf_y = time_1 / (2 * space_1 * space_1) for i in range(ht1): for j in range(hs): for k in range(hs-2): if j == 0 or j == hs1: k = k + 1 u_cen[i][j][k]=u[i][j][k]/2+u[i+1][j][k]/2-aerf_y*(u[i+1][j][k+1] -2*u[i+1][j][k]+u[i+1][j][k-1]-u[i][j][k+1]+2*u[i][j][k]-u[i][j][k-1])/4 #print(u_cen) #追赶法求解矩阵 left = np.zeros(ht-1) m1 = np.zeros(ht-1) m2 = -(2*aerf_x + 1) m3 = aerf_x m1[0] = m3 for t in range(ht1): for j in range(hs1-1): j = j+1 m2 = -(2 * aerf_x + 1) for i in range(hs1-1): i = i+1 left[i] = (2*aerf_y-1)*u[t][i][j]-aerf_y*(u[t][i][j+1]+u[t][i][j-1]) + left[i-1]*(-aerf_x/m2) if i >= 2: m2 = m3 + m3*(-m3/m2) m1[i] = m1[i-1]*(-m3/m2) for k in range(hs1-1): k1 = hs1-1-k u_cen[t][k1][j] = (left[k1] - aerf_x * u_cen[t][k1 + 1][j]) / m2-u_cen[t][0][j]*m1[k1]/m2 m2 = -(2 * aerf_x + 1) for i in range(hs1-1): i = i+1 left[i] = (2*aerf_y-1)*u_cen[t][i][j]-aerf_y*(u_cen[t][i][j+1]+u_cen[t][i][j-1]) + left[i-1]*(-aerf_x/m2) if i >= 2: m2 = m2 + m3*(-m3/m2) m1[i] = m1[i-1]*(-m3/m2) for k in range(hs1-1): k1 = hs1-1-k u[t+1][k1][j] = (left[k1] - aerf_x * u[t+1][k1 + 1][j]) / m2-u[t+1][0][j]*m1[k1]/m2 #print(u_cen) print(u)这个代码后面数组输出为什么和前面不同

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001