grad = zeros(size(theta));为什么要用theta的长度来初始化grad

时间: 2023-06-25 18:05:34 浏览: 44
在机器学习中,我们通常使用梯度下降算法来最小化代价函数。梯度下降算法的核心思想是不断地更新参数,使得代价函数的值越来越小。在每次更新参数时,我们需要计算代价函数对于每个参数的偏导数,也就是梯度。梯度的大小与参数的个数相同,因此我们需要一个和参数个数相同大小的向量来保存梯度信息。 在代码中,我们使用`grad = zeros(size(theta));`来初始化梯度向量,其中`size(theta)`返回的是参数`theta`的大小,也就是参数个数。这样做是为了确保梯度向量的大小和参数个数相同,从而能够正确地保存梯度信息。如果我们使用任意其他大小的向量来初始化梯度,就可能会导致与参数个数不匹配的错误。
相关问题

cost, grad= costFunction(initial_theta,X,y)

这段代码看起来是在调用 `costFunction` 函数,传入了初始参数 `initial_theta`、特征矩阵 `X` 和标签向量 `y`,并且将函数返回的代价值和梯度值分别赋值给 `cost` 和 `grad`。 可能的实现如下: ```python def costFunction(theta, X, y): # 计算代价函数和梯度 m = len(y) h = sigmoid(X @ theta) J = -1/m * (y.T @ np.log(h) + (1 - y).T @ np.log(1 - h)) grad = 1/m * X.T @ (h - y) return J, grad # 调用 costFunction initial_theta = np.zeros((n, 1)) cost, grad = costFunction(initial_theta, X, y) ``` 其中,`sigmoid` 函数是一个常用的逻辑斯蒂函数,实现如下: ```python def sigmoid(z): return 1 / (1 + np.exp(-z)) ``` 需要注意的是,这里的 `@` 符号表示矩阵乘法,`np.log` 表示自然对数。

我说的是在这段Matlab代码中给出% 定义数据和标签 X = data'; Y = labels'; % 添加偏置项 X = [ones(size(X,1), 1), X]; % 初始化参数 theta = zeros(size(X, 2), length(unique(Y))); % 定义超参数 alpha = 0.01; lambda = 0.1; numIterations = 1000; % 进行梯度下降 for i = 1:numIterations % 计算梯度 h = softmax(X * theta); grad = (1/size(X, 1)) * X' * (h - ind2vec(Y+1)'); % 添加正则化项 grad(2:end, :) = grad(2:end, :) + (lambda / size(X, 1)) * theta(2:end, :); % 更新参数 theta = theta - alpha * grad; end % 预测测试数据的类别概率 testX = [ones(size(testData,1), 1), testData']; prob = softmax(testX * theta); disp(prob);softmax函数和ind2vec函数的matlab实现

softmax函数和ind2vec函数在Matlab中的实现如下: ```matlab % softmax函数的实现 function s = softmax(x) e_x = exp(x - max(x)); s = e_x / sum(e_x); end % ind2vec函数的实现 function one_hot = ind2vec(index, vocab_size) one_hot = zeros(vocab_size, 1); one_hot(index) = 1; end ``` 在这里,softmax函数同样是将一个向量归一化为概率分布,ind2vec函数同样是将一个单词的索引转化为一个one-hot向量,用于输入到神经网络中进行训练。注意,这里的实现仅供参考,具体实现可能会因为场景不同而有所差异。

相关推荐

def nnCostFunction(nn_params,input_layer_size, hidden_layer_size, num_labels,X, y,Lambda): # Reshape nn_params back into the parameters Theta1 and Theta2 Theta1 = nn_params[:((input_layer_size+1) * hidden_layer_size)].reshape(hidden_layer_size,input_layer_size+1) Theta2 = nn_params[((input_layer_size +1)* hidden_layer_size ):].reshape(num_labels,hidden_layer_size+1) m = X.shape[0] J=0 X = np.hstack((np.ones((m,1)),X)) y10 = np.zeros((m,num_labels)) a1 = sigmoid(X @ Theta1.T) a1 = np.hstack((np.ones((m,1)), a1)) # hidden layer a2 = sigmoid(a1 @ Theta2.T) # output layer for i in range(1,num_labels+1): y10[:,i-1][:,np.newaxis] = np.where(y==i,1,0) for j in range(num_labels): J = J + sum(-y10[:,j] * np.log(a2[:,j]) - (1-y10[:,j])*np.log(1-a2[:,j])) cost = 1/m* J reg_J = cost + Lambda/(2*m) * (np.sum(Theta1[:,1:]**2) + np.sum(Theta2[:,1:]**2)) # Implement the backpropagation algorithm to compute the gradients grad1 = np.zeros((Theta1.shape)) grad2 = np.zeros((Theta2.shape)) for i in range(m): xi= X[i,:] # 1 X 401 a1i = a1[i,:] # 1 X 26 a2i =a2[i,:] # 1 X 10 d2 = a2i - y10[i,:] d1 = Theta2.T @ d2.T * sigmoidGradient(np.hstack((1,xi @ Theta1.T))) grad1= grad1 + d1[1:][:,np.newaxis] @ xi[:,np.newaxis].T grad2 = grad2 + d2.T[:,np.newaxis] @ a1i[:,np.newaxis].T grad1 = 1/m * grad1 grad2 = 1/m*grad2 grad1_reg = grad1 + (Lambda/m) * np.hstack((np.zeros((Theta1.shape[0],1)),Theta1[:,1:])) grad2_reg = grad2 + (Lambda/m) * np.hstack((np.zeros((Theta2.shape[0],1)),Theta2[:,1:])) return cost, grad1, grad2,reg_J, grad1_reg,grad2_reg

function [beta, b, loss_history] = linear_regression(X, y, batch_size, lr, lr_decay, epochs, lambda) %输入参数: %X:训练数据的特征矩阵,大小为 m x n,其中 m 是样本数,n 是特征数。 %y:训练数据的目标值,大小为 m x 1。 %batch_size:mini-batch 的大小。 %lr:学习率。 %lr_decay:学习率衰减系数。 %epochs:迭代次数。 %lambda:正则项系数。 %输出参数: %beta:学习到的模型参数,大小为 n x 1。 %b:学习到的模型偏差,标量。 %loss_history:损失函数的历史记录,大小为 epochs x 1。 % 对输入数据进行标准化 [m, n] = size(X); mu = mean(X); sigma = std(X); X = (X - mu) ./ sigma; % 初始化模型参数 beta = randn(n, 1); b = randn(); % 设置损失函数的历史记录 loss_history = zeros(epochs, 1); % 进行 mini-batch SGD 迭代 for epoch = 1:epochs % 随机打乱样本顺序 idx = randperm(m); X = X(idx, :); y = y(idx); % 迭代 mini-batch for i = 1:batch_size:m % 计算当前 mini-batch 的梯度 X_batch = X(i:min(i+batch_size-1, m), :); y_batch = y(i:min(i+batch_size-1, m)); grad_theta = (X_batch' * (X_batch * beta + b - y_batch)) / batch_size + lambda * beta; grad_b = sum(X_batch * beta + b - y_batch) / batch_size; % 更新参数 lr = lr / (1 + lr_decay * epoch); % 学习率衰减 beta = beta - lr * grad_theta; b = b - lr * grad_b; end % 计算当前损失函数的值 loss = sum((X * beta + b - y) .^ 2) / (2 * m) + lambda * sum(beta .^ 2) / 2; loss_history(epoch) = loss; end % 绘制损失函数随迭代次数变化的曲线 plot(1:epochs, loss_history); xlabel('Epochs'); ylabel('Loss'); title('Loss vs. Epochs') end将此代码中标准化还原

import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt from torch import autograd """ 用神经网络模拟微分方程,f(x)'=f(x),初始条件f(0) = 1 """ class Net(nn.Module): def __init__(self, NL, NN): # NL n个l(线性,全连接)隐藏层, NN 输入数据的维数, # NL是有多少层隐藏层 # NN是每层的神经元数量 super(Net, self).__init__() self.input_layer = nn.Linear(1, NN) self.hidden_layer = nn.Linear(NN,int(NN/2)) ## 原文这里用NN,我这里用的下采样,经过实验验证,“等采样”更优。更多情况有待我实验验证。 self.output_layer = nn.Linear(int(NN/2), 1) def forward(self, x): out = torch.tanh(self.input_layer(x)) out = torch.tanh(self.hidden_layer(out)) out_final = self.output_layer(out) return out_final net=Net(4,20) # 4层 20个 mse_cost_function = torch.nn.MSELoss(reduction='mean') # Mean squared error 均方误差求 optimizer = torch.optim.Adam(net.parameters(),lr=1e-4) # 优化器 def ode_01(x,net): y=net(x) y_x = autograd.grad(y, x,grad_outputs=torch.ones_like(net(x)),create_graph=True)[0] return y-y_x # y-y' = 0 # requires_grad=True).unsqueeze(-1) plt.ion() # 动态图 iterations=200000 for epoch in range(iterations): optimizer.zero_grad() # 梯度归0 ## 求边界条件的损失函数 x_0 = torch.zeros(2000, 1) y_0 = net(x_0) mse_i = mse_cost_function(y_0, torch.ones(2000, 1)) # f(0) - 1 = 0 ## 方程的损失函数 x_in = np.random.uniform(low=0.0, high=2.0, size=(2000, 1)) pt_x_in = autograd.Variable(torch.from_numpy(x_in).float(), requires_grad=True) # x 随机数 pt_y_colection=ode_01(pt_x_in,net) pt_all_zeros= autograd.Variable(torch.from_numpy(np.zeros((2000,1))).float(), requires_grad=False) mse_f=mse_cost_function(pt_y_colection, pt_all_zeros) # y-y' = 0 loss = mse_i + mse_f loss.backward() # 反向传播 optimizer.step() # 优化下一步。This is equivalent to : theta_new = theta_old - alpha * derivative of J w.r.t theta if epoch%1000==0: y = torch.exp(pt_x_in) # y 真实值 y_train0 = net(pt_x_in) # y 预测值 print(epoch, "Traning Loss:", loss.data) print(f'times {epoch} - loss: {loss.item()} - y_0: {y_0}') plt.cla() plt.scatter(pt_x_in.detach().numpy(), y.detach().numpy()) plt.scatter(pt_x_in.detach().numpy(), y_train0.detach().numpy(),c='red') plt.pause(0.1)

最新推荐

recommend-type

grpcio-1.63.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

SQLyog-13.1.3-0.x86Community.exe

SQLyog-13.1.3-0.x86Community
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。