num=4*conv([1 2],[1 6 6]) >>den=conv([1 0],conv([1 1],conv([1 1],… conv([1 1],[1 3 2 5]))))解释

时间: 2024-01-03 16:04:13 浏览: 20
这个问题是关于 MATLAB 代码的,其中 `conv` 函数表示两个多项式的卷积。下面是代码的解释: * `num=4*conv([1 2],[1 6 6])`: 首先,`[1 2]` 和 `[1 6 6]` 是两个多项式,它们的卷积可以表示为 `[1*1, 2*1+1*6, 2*6]`,即 `[1, 8, 12]`。这个结果再乘以 4,得到 `[4, 32, 48]`。因此,`num` 的值为 `[4, 32, 48]`。 * `den=conv([1 0],conv([1 1],conv([1 1],… conv([1 1],[1 3 2 5]))))`: 首先,`[1 3 2 5]` 是一个多项式,它可以表示为 `(1+s)(2+s)`。因此,`conv([1 1],[1 3 2 5])` 表示多项式 `(1+s)(1+2s+s^2)`,即 `[1, 4, 7, 7, 5]`。同理,`conv([1 1],conv([1 1],[1 3 2 5]))` 表示多项式 `(1+s)(1+s)(1+2s+s^2)`,即 `[1, 6, 12, 14, 10]`。以此类推,最终得到的 `den` 的值为 `[1, 6, 18, 34, 57, 71, 65]`。 因此,这段代码的作用是计算两个多项式的卷积,并将其中一个多项式乘以 4,最终得到两个多项式的系数。
相关问题

%继电式自整定调节器 clear; clc; %% 初值 Ts=0.001; L=300; yp=0; d=1; %% 传递函数离散化 Gs=tf(1,conv(conv([10,1],[5,1]),[2,1])); dsys =c2d(Gs,Ts,'tustin '); [num,den]=tfdata(dsys,'v'); len=length(den); %% 等幅振荡 for t=1:len-1 y(t)=0; u(t)=0; e(t)=yp-y(t); time(t)=t*Ts; end for t=len:L/Ts if e(t-1)>0 u(t)=d; else u(t)=-d; end y(t)=-den(2)*y(t-1)-den(3)*y(t-2)-den(4)*y(t-3)+num(1)*u(t)+num(2)*u(t-1)+num(3)*u(t-2)+num(4)*u(t-3); e(t)=yp-y(t); time(t)=t*Ts; end figure(1) plot(time,y,'DisplayName','y'); xlabel('时间t/s'); ylabel('输出值'); title('继电器控制下被控对象输出值'); %% 周期计算 i=1; for t=2:L/Ts if y(t)>y(t-1) t1(i)=t; i=i+1; end end i=1; for t=2:length(t1) if (t1(t)-t1(t-1))>1 t2(i)=t1(t); i=i+1; end end sum=0; for t=ceil((1/2)*length(t2))+1:length(t2) sum=sum+(t2(t)-t2(t-1)); end %% PID整定参数 Ku=4*d/(pi*max(y)); Tu=Ts*sum/(length(t2)-ceil((1/2)*length(t2))); %P控制 %Kc=0.5*Ku;Ti=0;Td=0; %Kp=Kc; Ki=0; Kd=0; %PI控制 %Kc=0.4*Ku;Ti=0.8*Tu;Td=0; %PID控制 Kc=0.6*Ku; Ti=0.5*Tu; Td=0.12*Tu; Kp=Kc; Ki=Kp*Ts/Ti; Kd=Kp*Td/Ts; %% PID控制 for t=1:len y(t)=0; u(t)=0; e(t)=yp-y(t); time(t)=t*Ts; end yp=1; for t=len:L/Ts det_u=Kp*(e(t-1)-e(t-2))+Ki*e(t-1)+Kd*(e(t-1)-2*e(t-2)+e(t-3)); u(t)=u(t-1)+det_u; y(t)=(1/den(1))*(-den(2)*y(t-1)-den(3)*y(t-2)-den(4)*y(t-3)+num(1)*u(t)+num(2)*u(t-1)+num(3)*u(t-2)+num(4)*u(t-3)); e(t)=yp-y(t); time(t)=t*Ts; end figure(2) plot(time,y,'DisplayName','y'); xlabel('时间t/s'); ylabel('输出值'); title('P控制下被控对象输出值');转成python语言

以下是将MATLAB代码转换为Python代码的结果: ```python import numpy as np from scipy.signal import convolve, cont2discrete import matplotlib.pyplot as plt # 初值 Ts = 0.001 L = 300 yp = 0 d = 1 # 传递函数离散化 Gs = np.poly1d([1], r=False) / np.poly1d([10, 1], r=False) / np.poly1d([5, 1], r=False) / np.poly1d([2, 1], r=False) dsys = cont2discrete((Gs.num, Gs.den), Ts, method='tustin') num, den = dsys.num[0], dsys.den[0] len_den = len(den) # 等幅振荡 y = np.zeros(L) u = np.zeros(L) e = np.zeros(L) time = np.zeros(L) for t in range(len_den-1): e[t] = yp - y[t] time[t] = t * Ts for t in range(len_den-1, L): if e[t-1] > 0: u[t] = d else: u[t] = -d y[t] = (-den[1]*y[t-1] - den[2]*y[t-2] - den[3]*y[t-3] + num[0]*u[t] + num[1]*u[t-1] + num[2]*u[t-2] + num[3]*u[t-3]) e[t] = yp - y[t] time[t] = t * Ts plt.figure(1) plt.plot(time, y, label='y') plt.xlabel('时间t/s') plt.ylabel('输出值') plt.title('继电器控制下被控对象输出值') # 周期计算 t1 = [] for t in range(1, L): if y[t] > y[t-1]: t1.append(t) t2 = [] for t in range(1, len(t1)): if t1[t] - t1[t-1] > 1: t2.append(t1[t]) sum_val = 0 for t in range(int((1/2)*len(t2))+1, len(t2)): sum_val += t2[t] - t2[t-1] # PID整定参数 Ku = 4 * d / (np.pi * np.max(y)) Tu = Ts * sum_val / (len(t2) - int((1/2)*len(t2))) Kc = 0.6 * Ku Ti = 0.5 * Tu Td = 0.12 * Tu Kp = Kc Ki = Kp * Ts / Ti Kd = Kp * Td / Ts # PID控制 y = np.zeros(L) u = np.zeros(L) e = np.zeros(L) time = np.zeros(L) for t in range(len_den-1): e[t] = yp - y[t] time[t] = t * Ts for t in range(len_den-1, L): det_u = Kp * (e[t-1] - e[t-2]) + Ki * e[t-1] + Kd * (e[t-1] - 2 * e[t-2] + e[t-3]) u[t] = u[t-1] + det_u y[t] = (1/den[0]) * (-den[1]*y[t-1] - den[2]*y[t-2] - den[3]*y[t-3] + num[0]*u[t] + num[1]*u[t-1] + num[2]*u[t-2] + num[3]*u[t-3]) e[t] = yp - y[t] time[t] = t * Ts plt.figure(2) plt.plot(time, y, label='y') plt.xlabel('时间t/s') plt.ylabel('输出值') plt.title('P控制下被控对象输出值') plt.show() ``` 需要注意的是,Python中的绘图需要使用`matplotlib`库。

numo=1700*[0.1 1]; deno=conv([1 0],conv([25 1],[0.00021^2 2*0.00021 1])); [num,den]=cloop(numo,deno); t=0:0.0001:0.5; step(num,den,t); %求校正后系统的稳态误差 numo=1700*[0.1 1]; deno=conv([1 0],conv([25 1],[0.00021^2 2*0.00021 1])); num3=deno; den3=deno+[0 0 0 0 0 numo]; num4=25/3;den4=[1 0]; [nume,dene]=series(num3,den3,num4,den4); ess=dcgain(nume,dene)

这段代码实现了对一个系统的校正和稳态误差的计算。具体来说,代码中定义了一个开环系统的传递函数 numo/deno,其中 numo 和 deno 分别为系统的分子和分母多项式系数。接着,使用 cloop 函数将开环系统转化为闭环系统,并使用 step 函数绘制了系统的单位阶跃响应曲线。 接下来,代码计算了校正后系统的稳态误差。首先复制了开环系统的分母 deno,表示在系统中加入一个单位阶跃输入后的响应曲线。然后将分子 numo 在分母 deno 后面补上 0,以得到校正后系统的传递函数 num3/den3。接着,定义了一个理想的单位阶跃响应曲线 num4/den4,其中 num4=25/3,den4=[1 0]。最后使用 series 函数将校正后系统与理想响应曲线串联起来,并使用 dcgain 函数计算系统的稳态误差 ess。 需要注意的是,代码中使用了一些 MATLAB 工具箱中的函数,如 cloop、step、series 和 dcgain,需要有 MATLAB 环境才能执行。

相关推荐

%% 求解根轨迹与渐近线 % 创建系统模型 num = 10 * conv([2 5], conv([1 6 34], [1])); den = conv([1 7], [50 644 996 -739 -3559]); sys = tf(num, den); % 计算系统的增益值 K = dcgain(sys); % 绘制根轨迹 figure; rlocus(sys); hold on; % 计算并绘制渐近线 p = pole(sys); z = zero(sys); if isempty(z) z = 0; % 若不存在零点则认为有一个零点在原点 end theta_p = angle(p - 7); theta_z = angle(z - 7); zeta = 0.6; T = 0.1; for i = 1:length(p) a = real(p(i)); b = imag(p(i)); sin_theta_a = sqrt(1 - zeta^2); K = abs(prod(-1-p/7)) / abs((a - p(i))*(a - conj(p(i)))); sigma_a = real(roots(den)); jw_intersection = imag(p(i)) - imag(p(i)) / tan(theta_p(i)); if ~isempty(z) y_asymptote = imag(tf([0 1], [1 sigma_a], T)) - imag(z(i)) + (imag(p(i)) / tan(theta_p(i))); else y_asymptote = jw_intersection / sin_theta_a; end plot([a-sigma_a,a+sigma_a],[b+jw_intersection,b+jw_intersection],'r--'); plot([a-sigma_a,a+sigma_a],[b+y_asymptote,b+y_asymptote],'m--'); end % 计算并输出渐近线与实轴的交点 sigma_a = real(roots(den)); disp(['Intersection of asymptotes and axis: sigma_a = ' num2str(sigma_a)]); % 计算并输出渐近线与实轴的夹角 angle_d = (180/pi)*angle(-10); % 在此,我默认第一个极点在左侧,因此角度为负 disp(['Angle between asymptotes and axis: ' num2str(angle_d) ' deg']); % 计算并输出分离点 zp = pole(sys(sys.num{1}==0)); % 零点为0的极点 if isempty(zp) fprintf('No breakaway/ break-in points.\n'); else fprintf('Breakaway/ Break-in point(s): \n'); for i = 1:length(zp) fprintf('%g + %gi\n', real(zp(i)), imag(zp(i))); end end % 计算并输出根轨迹与虚轴的交点 p1 = pole(sys); z1 = zero(sys); ImAxisCrossings = []; for k = 1:length(p1) if real(p1(k)) < 0 && imag(p1(k)) == 0 continue; % 跳过实部为负的极点,因为它们并不与虚轴相交 end if ~isempty(z1) M = abs(prod((-1)*z1)); N = ((K*abs(conv([1 -p1(k)], [1 -conj(p1(k))])))/abs(den(end))); % 计算二次项系数 kz = N/M; else kz = K; end s = [p1(k) zeros(1, length(z1))]; for i = 1:100 % 改为100步 s = [roots(conv([1 -s(end)], [1 -s(1:end-1)])) s(end)]; if ~isempty(find(abs(imag(s))<1e-3 & imag(s.*conj(s))>1e-3, 1)) ImAxisCrossings = [ImAxisCrossings real(s(find(abs(imag(s))<1e-3 & imag(s.*conj(s))>1e-3, 1)))]; end end end if isempty(ImAxisCrossings) fprintf('No intersection with imaginary axis.\n'); else end fprintf('Intersection(s) with imaginary axis: \n');

最新推荐

recommend-type

QT5开发及实例配套源代码.zip

QT5开发及实例配套[源代码],Qt是诺基亚公司的C++可视化开发平台,本书以Qt 5作为平台,每个章节在简单介绍开发环境的基础上,用一个小实例,介绍Qt 5应用程序开发各个方面,然后系统介绍Qt 5应用程序的开发技术,一般均通过实例介绍和讲解内容。最后通过三个大实例,系统介绍Qt 5综合应用开发。光盘中包含本书教学课件和书中所有实例源代码及其相关文件。通过学习本书,结合实例上机练习,一般能够在比较短的时间内掌握Qt 5应用技术。本书既可作为Qt 5的学习和参考用书,也可作为大学教材或Qt 5培训用书。
recommend-type

grpcio-1.46.3-cp37-cp37m-musllinux_1_1_i686.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(138).zip

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(138).zip
recommend-type

Eclipse的C/C++自动补全插件org.eclipse.cdt.ui-7.3.100.202111091601

Eclipse的C/C++自动补全插件,制作参考:https://blog.csdn.net/kingfox/article/details/104121203?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2~default~BlogCommendFromBaidu~Rate-1-104121203-blog-117118786.235%5Ev43%5Epc_blog_bottom_relevance_base1&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~BlogCommendFromBaidu~Rate-1-104121203-blog-117118786.235%5Ev43%5Epc_blog_bottom_relevance_base1&utm_relevant_index=2
recommend-type

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(137).zip

大学生毕业答辨ppt免费模板【不要积分】下载可编辑可用(137).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。