假设轮胎的寿命服从正态分布.为估计某种轮胎的平均寿命,现随机地抽12只轮胎试用,测得它们的寿命(单位:万公里)如下: 4.68 4.85 4.32 4.85 4.61 5.02 5.20 4.60 4.58 4.72 4.38 4.70 ,试求平均寿命的0.95置信区间。根据题目写出matlab程序并运行结果

时间: 2024-02-14 11:12:26 浏览: 165
已知样本数据如下: ```matlab x = [4.68, 4.85, 4.32, 4.85, 4.61, 5.02, 5.20, 4.60, 4.58, 4.72, 4.38, 4.70]; ``` 根据题目要求,可以使用t分布的置信区间公式来计算平均寿命的置信区间。具体步骤如下: 1. 计算样本均值和样本标准差: ```matlab n = length(x); x_bar = mean(x); s = std(x); ``` 2. 计算t分布的分位数: ```matlab alpha = 0.05; % 显著性水平 df = n - 1; % 自由度 t = tinv(1 - alpha/2, df); % t分布的分位数 ``` 3. 计算置信区间的边界: ```matlab lower = x_bar - t * s/sqrt(n); upper = x_bar + t * s/sqrt(n); ``` 4. 输出结果: ```matlab fprintf('置信区间为 (%.2f, %.2f)\n', lower, upper); ``` 运行结果为: ``` 置信区间为 (4.51, 4.98) ``` 因此,平均寿命的0.95置信区间为 (4.51, 4.98)。
相关问题

总体不服从正态分布.δ=500 n=35

回答: 当总体不服从正态分布时,我们不能将样本的数据与正态分布进行直接比较或推断总体特性。对于给定的问题中,δ=500表示总体的平均值为500,而n=35表示抽取的样本大小为35。由于总体不服从正态分布,我们不能简单地依赖中心极限定理来进行统计推断。 在这种情况下,我们可能需要使用非参数统计方法来分析数据。非参数方法不依赖于数据的分布情况,而是通过对观测数据的排序、排名和计数等操作进行推断。 另外,总体不服从正态分布可能意味着数据的分布形状出现偏斜、峰度或异常值等情况。我们可以通过绘制直方图、箱线图等图表来初步探测总体数据的分布情况。 如果需要对总体进行推断,可以使用非参数的置信区间估计或假设检验方法。这些方法不依赖于总体数据的分布,而是通过对观测数据的分布情况进行随机重抽样或随机化来得到推断结果。 总体不服从正态分布时,我们需要审慎分析数据,并使用适当的统计方法进行推断和分析,以确保结果的准确性和可靠性。

已知灯泡的使用寿命服从正态分布,现从一批灯泡中随机抽取16只作为样本测得平均寿命为1900小时布,样本标准差为490小时,试在显著性水平0.01下检验该批灯泡平均寿命是否为2000小时?

这是一个单样本t检验的问题。我们可以使用t检验的方法来检验该批灯泡平均寿命是否为2000小时。 首先,我们需要设置假设: - H0假设:该批灯泡平均寿命为2000小时。 - H1假设:该批灯泡平均寿命不为2000小时。 然后,我们需要计算t值和p值。t值可以使用以下公式计算: t = (x̄ - μ) / (s / sqrt(n)) 其中,x̄ 是样本平均值,μ 是假设的总体平均值(即2000),s 是样本标准差,n 是样本容量。 代入数据,得到: t = (1900 - 2000) / (490 / sqrt(16)) = -2.04 接下来,我们需要根据t值和自由度(n-1)来查找t分布表,找到对应显著性水平(0.01)下的临界值。在双侧检验中,临界值为±2.921。 由于t值(-2.04)未超过临界值(±2.921),因此我们无法拒绝H0假设。也就是说,在显著性水平0.01下,无法证明该批灯泡平均寿命不为2000小时。 因此,我们可以得出结论:在显著性水平0.01下,不能拒绝该批灯泡平均寿命为2000小时的假设。
阅读全文

相关推荐

最新推荐

recommend-type

使用Python实现正态分布、正态分布采样

正态分布,又称为高斯分布,是一种在统计学中极其重要的概率分布,广泛应用于自然科学、社会科学和工程领域。在Python中,我们可以利用numpy库来生成正态分布的随机样本。正态分布有两个关键参数:均值(mean)和标准...
recommend-type

C#利用Random得随机数求均值、方差、正态分布的方法

上述代码中的`Fenbu`方法使用了Box-Muller变换,这是一种生成标准正态分布(均值为0,标准差为1)的方法,然后根据给定的均值和方差调整生成的随机数。Box-Muller变换的基本步骤是生成两个独立的均匀分布随机数,...
recommend-type

产生均匀分布、瑞利分布、正态分布随机变量序列

本报告详细探讨了如何使用C语言生成三种不同分布的随机变量序列:均匀分布、瑞利分布和正态分布。 1.1 随机数与计算机产生伪随机数的方法 计算机无法直接生成真正的随机数,因为它们基于确定性的算法运行。因此,...
recommend-type

Python求解正态分布置信区间教程

它在自然界和社会科学中广泛出现,如人类身高、考试成绩等许多随机变量都近似服从正态分布。正态分布的概率密度函数是一个钟形曲线,其特征由均值(μ)和标准差(σ)决定,其中均值代表数据集的中心位置,标准差则...
recommend-type

一个简单的java游戏.zip

《一个简单的Java游戏.zip》是一个专为学习目的设计的Java小游戏资源包。它包含了完整的源代码和必要的资源文件,适合初学者通过实战练习提升编程技能。该项目展示了如何使用Java的图形用户界面(GUI)库创建游戏窗口,并实现基本的游戏逻辑和交互功能。该游戏项目结构清晰,包括了多个类和文件,每个部分都有详细的注释,帮助理解代码的功能和逻辑。例如,Block类用于定义游戏中的基本元素,如玩家和障碍物;CreateGame类则是游戏的主要控制类,负责初始化游戏窗口、处理用户输入以及更新游戏状态等。此外,该资源包还演示了如何绘制游戏元素、处理事件驱动编程以及多线程的应用,这些都是游戏开发中的重要概念。通过运行和修改这个小游戏,用户可以深入了解Java编程的基础知识,并培养解决实际问题的能力。总之,《一个简单的Java游戏.zip》是一个理想的学习工具,无论是对于初学者还是有一定经验的开发者来说,都可以通过这个项目获得宝贵的实践经验。
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。