设某种电子管的使用寿命近似服从正态分布,从中随机抽取15个进行试验,得到的样本均值为1950h,样本标准差为300h,以95%的置信度求整批电子管的平均使用寿命的置信区间Python
时间: 2024-12-13 15:24:56 浏览: 19
在Python中,你可以使用z-score公式和正态分布表(或者scipy库的norm.cdf()函数)来计算95%置信区间的下限和上限。首先,我们需要确定置信水平对应的Z值,然后用样本均值、样本标准差和样本大小来计算。
下面是一个步骤演示:
```python
from scipy import stats
# 给定的样本信息
sample_mean = 1950 # 样本均值 (hours)
sample_std_dev = 300 # 样本标准差 (hours)
sample_size = 15 # 样本容量
confidence_level = 0.95 # 置信度
# 使用z-score公式
z_critical = stats.norm.ppf(1 - confidence_level / 2) # Z值对应于95%置信度
# 计算标准误 (Standard Error)
standard_error = sample_std_dev / np.sqrt(sample_size)
# 置信区间计算
lower_bound = sample_mean - z_critical * standard_error
upper_bound = sample_mean + z_critical * standard_error
(lower_bound, upper_bound)
```
运行上述代码后,你会得到以95%置信度下电子管平均使用寿命的置信区间。
请注意,由于Python中的浮点运算存在精度问题,实际结果可能会略微有些差异。另外,对于非常大的样本量,这个Z值近似计算可能不太准确,此时可以使用t分布替代。
阅读全文