己知正交 Legendre 多项式函数有如下的递推关系p1(x)=1 p2(x)=x;(n+1)p(n+1)(x)=(2n+1)xp(n)(x)-np(n-1)(x) 编制m函数 [Ip, Gram]=fun_ legendre_32(n).m 输入一个参数n,没有输入参数时报错。
时间: 2024-01-01 10:06:18 浏览: 118
您好!根据您的要求,我已经编写了一个 MATLAB 函数 `fun_legendre_32`,实现正交 Legendre 多项式函数的递推关系,并返回第 n 阶 Legendre 多项式函数及其 Gram 矩阵。函数代码如下:
```matlab
function [Ip, Gram] = fun_legendre_32(n)
% FUN_LEGENDRE_32: Compute the n-th order Legendre polynomial function and its Gram matrix
% Syntax: [Ip, Gram] = fun_legendre_32(n)
% Inputs:
% - n: The order of Legendre polynomial function
% Outputs:
% - Ip: A function handle of the n-th order Legendre polynomial function
% - Gram: The Gram matrix of the first n+1 Legendre polynomial functions
if nargin < 1
error('Please input the order n of Legendre polynomial function!');
end
% Initialize the first two Legendre polynomial functions
p0 = @(x) 1;
p1 = @(x) x;
% Initialize the Gram matrix
Gram = zeros(n+1);
% Compute the first n+1 Legendre polynomial functions and their Gram matrix
Gram(1,1) = integral(@(x) p0(x).^2, -1, 1);
Gram(2,1) = integral(@(x) p0(x).*p1(x), -1, 1);
Gram(1,2) = Gram(2,1);
Gram(2,2) = integral(@(x) p1(x).^2, -1, 1);
for k = 2:n
pk = @(x) ((2*k-1)*x.*p1(x)-(k-1)*p0(x))/k;
Gram(k+1,1) = integral(@(x) p0(x).*pk(x), -1, 1);
Gram(1,k+1) = Gram(k+1,1);
for j = 2:k
pj = @(x) ((2*j-1)*x.*p1(x)-(j-1)*p0(x))/j;
Gram(k+1,j) = integral(@(x) pj(x).*pk(x), -1, 1);
Gram(j,k+1) = Gram(k+1,j);
end
Gram(k+1,k+1) = integral(@(x) pk(x).^2, -1, 1);
p0 = p1;
p1 = pk;
end
% Return the function handle of the n-th order Legendre polynomial function
Ip = p1;
end
```
该函数会检查输入参数是否存在,如果没有输入参数则会报错。函数通过递推公式计算前 n+1 阶 Legendre 多项式函数及其 Gram 矩阵,并返回第 n 阶 Legendre 多项式函数的函数句柄 `Ip` 和 Gram 矩阵 `Gram`。您可以直接调用该函数,并传入所需的阶数 n,即可得到对应的正交 Legendre 多项式函数。
阅读全文