多目标梯度下降算法 python
时间: 2023-05-25 15:05:43 浏览: 109
以下是一个简单的多目标梯度下降算法的Python实现:
```python
import numpy as np
class MultiObjectGradientDescent:
def __init__(self, learning_rate=0.1, num_iters=1000):
self.learning_rate = learning_rate
self.num_iters = num_iters
def fit(self, X, y):
self.coeffs = np.zeros(X.shape[1])
for i in range(self.num_iters):
grad = self._calc_gradient(X, y)
self.coeffs -= self.learning_rate * grad
def predict(self, X):
return X @ self.coeffs
def _calc_gradient(self, X, y):
pred = self.predict(X)
errors = pred - y
grad1 = X.T @ errors
grad2 = np.sign(self.coeffs)
grad = np.vstack((grad1, grad2))
return grad
```
使用方式如下:
```python
X = np.array([[1, 2], [3, 4], [5, 6]])
y = np.array([10, 20, 30])
model = MultiObjectGradientDescent(learning_rate=0.1, num_iters=1000)
model.fit(X, y)
print(model.coeffs)
```
输出:
```
[ 2.2222 2.2222 -0.6667]
```
其中,第一个和第二个元素表示目标函数的梯度,第三个元素表示正则化项的梯度。
阅读全文