c语言用线性表存储一元多项式,并完成一元多项式的求和运算

时间: 2023-09-27 17:02:34 浏览: 67
C语言中可以使用数组来存储一元多项式。一元多项式可以表示为一组系数和指数的集合。我们可以使用一个二维数组来存储多项式的系数和指数。 假设我们要存储一个多项式的最高次数为n,那么我们可以定义一个二维数组polynomial[n+1][2],其中第一列用于存储系数,第二列用于存储指数。例如,多项式2x^3 + 3x^2 + 4x + 5可以表示为一个数组polynomial[4][2],每一行表示一个项的系数和指数。 现在我们想对两个多项式进行求和运算,可以按照如下步骤进行: 1. 定义两个多项式的数组polynomial1和polynomial2,并初始化它们的系数和指数。 2. 定义一个数组result[max(polynomial1的最高次数, polynomial2的最高次数)+1][2]来存储结果多项式的系数和指数。 3. 使用两个循环遍历polynomial1和polynomial2,将相应指数的系数相加,并将结果存储在result数组中。 4. 如果某一多项式的指数大于另一多项式,则直接将这个多项式的系数和指数存储在result数组中。 5. 最后,将result数组中的非零项输出,即为两个多项式的和。 这样就可以完成一元多项式的求和运算。 需要注意的是,这种方法适用于多项式的次数较小的情况。如果多项式的次数较大,可能会引起数组的大小超过限制。在这种情况下,可以考虑使用动态内存分配来解决问题。
相关问题

用c语言线性表实现一元多项式加法运算,以(0,0)结束

以下是一元多项式加法运算的C语言代码: #include <stdio.h> #include <stdlib.h> #define MAX_TERM 100 // 多项式的最大项数 typedef struct { float coef; // 系数 int expn; // 指数 } term; typedef struct { term data[MAX_TERM]; int len; } polynomial; void create_polynomial(polynomial *p) { // 创建多项式 printf("请输入多项式的项数:"); scanf("%d", &p->len); for (int i = 0; i < p->len; ++i) { printf("请输入第%d项的系数和指数:", i + 1); scanf("%f%d", &p->data[i].coef, &p->data[i].expn); } } void print_polynomial(polynomial p) { // 输出多项式 for (int i = 0; i < p.len; ++i) { if (p.data[i].coef > 0 && i > 0) { printf("+"); } printf("%.2fx^%d", p.data[i].coef, p.data[i].expn); } printf("\n"); } polynomial add_polynomial(polynomial p1, polynomial p2) { // 多项式加法 polynomial result = {0}; int i = 0, j = 0, k = 0; while (i < p1.len && j < p2.len) { if (p1.data[i].expn > p2.data[j].expn) { result.data[k++] = p1.data[i++]; } else if (p1.data[i].expn < p2.data[j].expn) { result.data[k++] = p2.data[j++]; } else { float sum = p1.data[i].coef + p2.data[j].coef; if (sum != 0) { result.data[k].coef = sum; result.data[k++].expn = p1.data[i].expn; } ++i; ++j; } } while (i < p1.len) { result.data[k++] = p1.data[i++]; } while (j < p2.len) { result.data[k++] = p2.data[j++]; } result.len = k; return result; } int main() { polynomial p1 = {0}, p2 = {0}, result = {0}; printf("请输入第一个多项式:\n"); create_polynomial(&p1); printf("请输入第二个多项式:\n"); create_polynomial(&p2); printf("第一个多项式为:"); print_polynomial(p1); printf("第二个多项式为:"); print_polynomial(p2); result = add_polynomial(p1, p2); printf("两个多项式相加的结果为:"); print_polynomial(result); return 0; } 在代码中,我们首先定义了一个term结构体表示多项式的一项,其中包括系数和指数两个成员变量。然后定义了一个polynomial结构体表示多项式,其中包括一个term类型的数组和一个表示多项式长度的len变量。 接着,我们实现了三个函数:create_polynomial用于创建多项式,print_polynomial用于输出多项式,add_polynomial用于实现多项式加法。 在main函数中,我们先分别创建了两个多项式p1和p2,然后输出它们,再调用add_polynomial函数求出它们的和result,并输出结果。

数据结构用链式线性表实现一元多项式求导

链式线性表实现一元多项式的结构体可以定义如下: ``` typedef struct PolyNode *Polynomial; struct PolyNode { int coef; // 系数 int expon; // 指数 Polynomial next; }; ``` 其中,`coef`表示系数,`expon`表示指数,`next`表示下一个节点的指针。 求导的过程可以通过遍历链表,对每一项进行求导,然后构造新的链表来实现。具体实现可以参考下面的代码: ``` Polynomial Derivative(Polynomial P) { Polynomial dP, pre, cur; dP = (Polynomial)malloc(sizeof(struct PolyNode)); dP->next = NULL; pre = dP; cur = P->next; while (cur) { if (cur->expon != 0) { Polynomial tmp = (Polynomial)malloc(sizeof(struct PolyNode)); tmp->coef = cur->coef * cur->expon; tmp->expon = cur->expon - 1; tmp->next = NULL; pre->next = tmp; pre = tmp; } cur = cur->next; } return dP; } ``` 该函数返回的是求导后的链表。

相关推荐

最新推荐

使用c或C++一元稀疏多项式的加法运算

设计一个实现一元稀疏多项式相加运算的演示程序: (1)输入并建立两个多项式; (2)多项式a与b相加,建立和多项式c; (3)输出多项式a,b,c。输出格式:比如多项式a为:A(x)=c1xe1+ c2xe2+…+ cmxem,其中,ci和...

数据结构 实验报告 线性表及其应用(多项式相加、相乘)等

线性表及其应用(多项式相加、相乘) 哈弗曼树及哈弗曼编码译码的实现 Dijkstra最短路径 或Prim最小生成树 (快速、堆、归并)排序算法的设计 构造平衡二叉排序树 有各种流程图等

这是Vue 2的回购。对于Vue 3,请转到.zip

这是Vue 2的回购。对于Vue 3,请转到.zip

步行高级机器人技术.doc

步行高级机器人技术.doc

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

c语言本题要求编写程序,计算学生们的平均成绩,并统计不及格人数。题目保证输入输出均在整型范围内。

好的,下面是一个简单的 C 语言程序,可以帮助你计算学生们的平均成绩,并统计不及格人数: ```c #include <stdio.h> int main() { int n, sum = 0, fail = 0; scanf("%d", &n); // 输入学生数量 for (int i = 0; i < n; i++) { int score; scanf("%d", &score); // 输入学生的成绩 sum += score; // 累加学生的成绩 if (score < 60) {

资料计算机二级Python真题及答案解析1练习.pdf

。。。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索