Unveiling the Doris Database Architecture: A Comprehensive Analysis from Storage to Querying

发布时间: 2024-09-14 22:25:20 阅读量: 45 订阅数: 35
ZIP

(179979052)基于MATLAB车牌识别系统【带界面GUI】.zip

# 1. Doris Database Overview Doris is an open-source distributed MPP (Massively Parallel Processing) database designed for large-scale data analytics. It utilizes columnar storage and MPP architecture to efficiently process petabyte-level data and offers sub-second query response times. Key features of Doris include: - **High Performance:** Columnar storage and MPP architecture enable Doris to quickly process large-scale data queries. - **High Availability:** Doris employs a replica mechanism and failover mechanism to ensure data high availability and reliability. - **Scalability:** Doris can easily scale up to hundreds of nodes to meet growing data demands. - **Ease of Use:** Doris supports standard SQL syntax and provides a rich set of APIs and tools for developers. # 2. Doris Storage Architecture ### 2.1 Columnar Storage Principles #### 2.1.1 Data Layout and Compression Doris adopts a columnar storage architecture that stores data on disk by column. This approach has several advantages compared to traditional row-based storage: ***High Data Compression Rate:** Similar data types and values within the same column lead to more efficient compression. ***Faster Query Speed:** Only relevant columns are read during queries, reducing IO overhead. ***Good Scalability:** Columns can be added or removed easily without affecting other columns' data. Doris uses various compression algorithms, including Snappy, Zlib, and LZ4, to further enhance data compression rates. #### 2.1.2 Data Partitioning and Replicas To enhance query performance and data reliability, Doris partitions data into multiple segments. Each partition contains records within a specific time or data range. Doris also supports data replication to ensure data redundancy and high availability. Replicas can be stored on different machines, so if one machine fails, other replicas can provide data service. ### 2.2 Storage Engine Implementation #### 2.2.1 Storage Formats and Indexes Doris uses Parquet file format for data storage. Parquet is a columnar storage format that supports various compression algorithms and encoding schemes. Doris supports multiple index types, including Bloom filters, bitmap indexes, and skip list indexes. These indexes can accelerate query performance, especially for filtering and aggregation operations. #### 2.2.2 Data Loading and Updates Doris supports various data loading methods, including: ***Streaming Loading:** Real-time loading of data through Kafka or other streaming data sources. ***Batch Loading:** Loading large amounts of data through files or HDFS. ***Incremental Loading:** Only loading the data that has been updated since the last load. Doris also supports data update operations, including insertion, update, and deletion. Update operations are implemented by writing to a WAL (Write-Ahead Log) to ensure data consistency and reliability. **Code Block:** ```python import doris # Create a Doris client client = doris.Client("***.*.*.*", 8030) # Create a table client.create_table("test_table", { "id": "INT", "name": "STRING", "age": "INT" }) # Load data client.load_data("test_table", "hdfs://path/to/data.parquet") # Query data result = client.query("SELECT * FROM test_table") # Print results for row in result: print(row) ``` **Logical Analysis:** This code demonstrates how to use the Doris client to create tables, load data, and query data. * The `create_table` function is used to create a table and specify the column names and data types. * The `load_data` function is used to load data from HDFS into the table. * The `query` function is used to query data in the table. * The `result` variable is a generator that iterates over the query results. * The `for` loop is used to print each row in the query results. **Parameter Explanation:** * `client`: Doris client object. * `table_name`: Name of the table to create or query. * `schema`: Columns and data types of the table. * `data_path`: Path of the data to be loaded. * `sql`: SQL query to execute. # 3. Doris Query Engine ### 3.1 Query Optimizer The query optimizer is the core component of the Doris query engine, responsible for converting user queries into efficient execution plans. #### 3.1.1 Query Plan Generation The query optimizer first performs syntactic and semantic analysis on the user query, generating a query tree. Then, it applies a series of optimization rules to optimize the query tree, such as: - **Predicate Pushdown:** Pushing predicate conditions down to subqueries or join operations to reduce the amount of data that needs to be processed. - **Join Reordering:** Reordering join operations to optimize the execution plan, e.g., using hash join or nested loop join. - **Subquery Unnesting:** Unnesting subqueries into inline views to eliminate unnecessary nested queries. #### 3.1.2 Cost Estimation After generating query plans, the query optimizer performs cost estimation for each plan to choose the optimal execution plan. Cost estimation is based on statistical information, such as table size, column cardinality, and query predicate selectivity. ### 3.2 Execution Engine The execution engine is responsible for executing query plans. It uses vectorized and parallel execution techniques to improve query performance. #### 3.2.1 Vectorized Execution Vectorized execution organizes data in the query into vectors rather than processing data row by row. This significantly reduces memory access and CPU overhead, thereby increasing query speed. For example, the following code demonstrates an example of vectorized execution: ```python import numpy as np # Create a DataFrame with 10 million rows of data df = pd.DataFrame({'col1': np.random.randint(1000, size=***), 'col2': np.random.rand(***)}) # Query using vectorized execution result = df.query('col1 > 500 and col2 < 0.5') ``` #### 3.2.2 Parallel Execution Parallel execution breaks down query tasks into multiple subtasks and executes these subtasks in parallel on multiple computing nodes. This significantly reduces query time, especially when dealing with large datasets. For example, the following mermaid flowchart illustrates an example of parallel execution: ```mermaid sequenceDiagram participant User participant Query Optimizer participant Execution Engine User->Query Optimizer: Send query Query Optimizer->Execution Engine: Generate execution plan Execution Engine->User: Return execution plan Execution Engine->Node 1: Execute subtask 1 Execution Engine->Node 2: Execute subtask 2 Node 1->Execution Engine: Return subtask 1 result Node 2->Execution Engine: Return subtask 2 result Execution Engine->User: Return query result ``` # 4. Doris Application Scenarios Doris database showcases its powerful performance and flexible architecture in a variety of application scenarios. This chapter will delve into Doris's applications in real-time analytics and offline analytics domains and provide specific examples and best practices. ## 4.1 Real-Time Analytics Real-time analytics refers to the processing and analysis of continuously changing data in real-time to obtain the latest insights. Doris has several advantages in real-time analytics: - **Low Latency Data Ingestion:** Doris supports various data ingestion methods, including Kafka, Flume, and HTTP API, allowing for fast and efficient ingestion of streaming data. - **Real-Time Computing:** Doris's query engine supports stream processing, enabling real-time computation and aggregation of incoming data to generate real-time dashboards and alerts. ### 4.1.1 Stream Processing Doris can serve as a stream processing platform for real-time analysis of streaming data from various sources. Its streaming processing capabilities include: - **Window Functions:** Doris supports a variety of window functions, such as sliding windows, hopping windows, and session windows, enabling grouping and aggregation of streaming data. - **Time Series Analysis:** Doris provides a rich set of time series analysis functions for trend analysis, anomaly detection, and forecasting of time series data. ```sql CREATE TABLE stream_data ( user_id INT, event_time TIMESTAMP, event_type STRING, event_value DOUBLE ) ENGINE=OLAP DISTRIBUTED BY HASH(user_id) BUCKETS 10; INSERT INTO stream_data (user_id, event_time, event_type, event_value) VALUES (1, '2023-03-08 10:00:00', 'purchase', 100.00), (2, '2023-03-08 10:05:00', 'view', 10.00), (3, '2023-03-08 10:10:00', 'purchase', 200.00); SELECT user_id, SUM(event_value) AS total_value FROM stream_data WHERE event_time >= '2023-03-08 10:00:00' GROUP BY user_id WINDOW AS (PARTITION BY user_id ORDER BY event_time ROWS BETWEEN 1 PRECEDING AND CURRENT ROW); ``` ### 4.1.2 Real-Time Dashboards Doris can act as the underlying data source for real-time dashboards, providing real-time visual data insights to users. Its real-time dashboard features include: - **Dashboard Building:** Doris supports building real-time dashboards through SQL statements or third-party tools, displaying various metrics and charts. - **Data Refreshing:** Doris's real-time dashboards can automatically refresh data, ensuring users always see the latest information. ## 4.2 Offline Analytics Offline analytics refers to the batch processing and analysis of historical data to obtain long-term trends and patterns. Doris has several advantages in offline analytics: - **Big Data Processing:** Doris can process vast amounts of data, supporting PB-level storage and analytics. - **Flexible Data Models:** Doris supports flexible data models, adapting easily to ever-changing business needs. ### 4.2.1 Big Data Processing Doris can serve as a big data processing platform, analyzing big data from various sources. Its big data processing features include: - **Data Importing:** Doris supports various data importing methods, including Hive, HDFS, and CSV files, enabling efficient importation of large-scale data. - **Data Processing:** Doris provides a rich set of SQL functions and UDFs for various data processing operations, such as filtering, aggregation, and transformation. ```sql CREATE TABLE sales_data ( order_id INT, product_id INT, quantity INT, sales_amount DOUBLE ) ENGINE=OLAP DISTRIBUTED BY HASH(order_id) BUCKETS 10; INSERT INTO sales_data (order_id, product_id, quantity, sales_amount) SELECT order_id, product_id, SUM(quantity), SUM(sales_amount) FROM raw_sales_data GROUP BY order_id, product_id; SELECT product_id, SUM(sales_amount) AS total_sales FROM sales_data GROUP BY product_id; ``` ### 4.2.2 Data Warehouse Doris can act as a data warehouse, providing a unified data view for enterprises and supporting multidimensional analysis and decision-making. Its data warehouse features include: - **Data Integration:** Doris can integrate data from various sources, including relational databases, NoSQL databases, and file systems. - **Data Modeling:** Doris supports flexible data modeling, capable of building star schemas, snowflake schemas, and dimension models. # 5. Doris Best Practices ### 5.1 Performance Tuning #### 5.1.1 Hardware Configuration Optimization ***CPU:** Choose CPUs with high frequencies and sufficient core counts to meet query processing needs. ***Memory:** Allocate adequate memory to cache query data and intermediate results, reducing disk IO. ***Storage:** Use SSD or NVMe storage devices to improve data read speeds. ***Network:** Ensure network bandwidth and latency meet the requirements for parallel query execution. #### 5.1.2 SQL Statement Optimization ***Use Columnar Storage Formats:** Doris utilizes columnar storage, optimizing query performance for specific columns. ***Avoid Full Table Scans:** Use WHERE clauses and indexes to filter data, reducing the amount of data scanned. ***Use Vectorized Execution:** Doris supports vectorized execution, processing multiple data rows at once, increasing query speed. ***Optimize JOIN Operations:** Use appropriate JOIN algorithms (e.g., Nested Loop Join, Hash Join) and consider data distribution. ***Use Materialized Views:** Pre-calculate frequently queried data and store it in materialized views to increase query speed. ### 5.2 Operations Management #### 5.2.1 Cluster Deployment and Monitoring ***Cluster Deployment:** Choose an appropriate cluster size and configuration based on business needs and data volume. ***Monitoring:** Use monitoring tools (e.g., Prometheus, Grafana) to monitor the health of the cluster, including CPU, memory, storage, and network usage. #### 5.2.2 Fault Handling and Recovery ***Fault Handling:** Establish fault handling mechanisms, including automatic failover, data backup, and recovery. ***Data Backup:** Regularly back up data to prevent data loss and consider off-site backups to enhance disaster recovery capabilities. ***Data Recovery:** Use backup data to recover the cluster in the event of a failure and minimize data loss.
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

zip

LI_李波

资深数据库专家
北理工计算机硕士,曾在一家全球领先的互联网巨头公司担任数据库工程师,负责设计、优化和维护公司核心数据库系统,在大规模数据处理和数据库系统架构设计方面颇有造诣。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

STM32串口数据宽度调整实战:实现从8位到9位的无缝过渡

![STM32串口数据宽度调整实战:实现从8位到9位的无缝过渡](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-e621f51879b38d79064915f57ddda4e8.png) # 摘要 STM32微控制器的串口数据宽度配置是实现高效通信的关键技术之一。本文首先介绍了STM32串口通信的基础知识,重点阐述了8位数据宽度的通信原理及其在实际硬件上的实现机制。随后,本文探讨了从8位向9位数据宽度过渡的理论依据和实践方法,并对9位数据宽度的深入应用进行了编程实践、错误检测与校正以及性能评估。案例研究

【非线性材料建模升级】:BH曲线高级应用技巧揭秘

# 摘要 非线性材料的建模是工程和科学研究中的一个重要领域,其中BH曲线理论是理解和模拟磁性材料性能的关键。本文首先介绍了非线性材料建模的基础知识,深入阐释了BH曲线理论以及其数学描述和参数获取方法。随后,本文探讨了BH曲线在材料建模中的实际应用,包括模型的建立、验证以及优化策略。此外,文中还介绍了BH曲线在多物理场耦合分析中的高级应用技巧和非线性材料仿真案例分析。最后,本文展望了未来研究趋势,包括材料科学与信息技术的融合,新型材料BH曲线研究,以及持续的探索与创新方向。 # 关键字 非线性材料建模;BH曲线;磁性材料;多物理场耦合;数值计算;材料科学研究 参考资源链接:[ANSYS电磁场

【51单片机微控制器】:MLX90614红外传感器应用与实践

![【51单片机微控制器】:MLX90614红外传感器应用与实践](https://cms.mecsu.vn/uploads/media/2023/05/B%E1%BA%A3n%20sao%20c%E1%BB%A7a%20%20Cover%20_1000%20%C3%97%20562%20px_%20_43_.png) # 摘要 本论文首先介绍了51单片机与MLX90614红外传感器的基础知识,然后深入探讨了MLX90614传感器的工作原理、与51单片机的通信协议,以及硬件连接和软件编程的具体步骤。通过硬件连接的接线指南和电路调试,以及软件编程中的I2C读写操作和数据处理与显示方法,本文为实

C++ Builder 6.0 界面设计速成课:打造用户友好界面的秘诀

![C++ Builder 6.0 界面设计速成课:打造用户友好界面的秘诀](https://desk.zoho.com/DocsDisplay?zgId=674977782&mode=inline&blockId=nufrv97695599f0b045898658bf7355f9c5e5) # 摘要 本文全面介绍了C++ Builder 6.0在界面设计、控件应用、交互动效、数据绑定、报表设计以及项目部署和优化等方面的应用。首先概述了界面设计的基础知识和窗口组件的类别与功能。接着深入探讨了控件的高级应用,包括标准控件与高级控件的使用技巧,以及自定义控件的创建和第三方组件的集成。文章还阐述了

【GC032A医疗应用】:确保设备可靠性与患者安全的关键

![GC032A DataSheet_Release_V1.0_20160524.pdf](https://img-blog.csdnimg.cn/544d2bef15674c78b7c309a5fb0cd12e.png) # 摘要 本文详细探讨了GC032A医疗设备在应用、可靠性与安全性方面的综合考量。首先概述了GC032A的基本应用,紧接着深入分析了其可靠性的理论基础、提升策略以及可靠性测试和评估方法。在安全性实践方面,本文阐述了设计原则、实施监管以及安全性测试验证的重要性。此外,文章还探讨了将可靠性与安全性整合的必要性和方法,并讨论了全生命周期内设备的持续改进。最后,本文展望了GC03

【Python 3.9速成课】:五步教你从新手到专家

![【Python 3.9速成课】:五步教你从新手到专家](https://chem.libretexts.org/@api/deki/files/400254/clipboard_e06e2050f11ae882be4eb8f137b8c6041.png?revision=1) # 摘要 本文旨在为Python 3.9初学者和中级用户提供一个全面的指南,涵盖了从入门到高级特性再到实战项目的完整学习路径。首先介绍了Python 3.9的基础语法和核心概念,确保读者能够理解和运用变量、数据结构、控制流语句和面向对象编程。其次,深入探讨了迭代器、生成器、装饰器、上下文管理器以及并发和异步编程等高

【数字电路设计】:Logisim中的位运算与移位操作策略

![数字电路设计](https://forum.huawei.com/enterprise/api/file/v1/small/thread/667497709873008640.png?appid=esc_fr) # 摘要 本文旨在探讨数字电路设计的基础知识,并详细介绍如何利用Logisim软件实现和优化位运算以及移位操作。文章从基础概念出发,深入阐述了位运算的原理、逻辑门实现、以及在Logisim中的实践应用。随后,文章重点分析了移位操作的原理、Logisim中的实现和优化策略。最后,本文通过结合高级算术运算、数据存储处理、算法与数据结构的实现案例,展示了位运算与移位操作在数字电路设计中

Ledit项目管理与版本控制:无缝集成Git与SVN

![Ledit项目管理与版本控制:无缝集成Git与SVN](https://www.proofhub.com/articles/wp-content/uploads/2023/08/All-in-one-tool-for-collaboration-ProofHub.jpg) # 摘要 本文首先概述了版本控制的重要性和基本原理,深入探讨了Git与SVN这两大版本控制系统的不同工作原理及其设计理念对比。接着,文章着重描述了Ledit项目中Git与SVN的集成方案,包括集成前的准备工作、详细集成过程以及集成后的项目管理实践。通过对Ledit项目管理实践的案例分析,本文揭示了版本控制系统在实际开发

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )