Unveiling the Doris Database Architecture: A Comprehensive Analysis from Storage to Querying

发布时间: 2024-09-14 22:25:20 阅读量: 64 订阅数: 46
# 1. Doris Database Overview Doris is an open-source distributed MPP (Massively Parallel Processing) database designed for large-scale data analytics. It utilizes columnar storage and MPP architecture to efficiently process petabyte-level data and offers sub-second query response times. Key features of Doris include: - **High Performance:** Columnar storage and MPP architecture enable Doris to quickly process large-scale data queries. - **High Availability:** Doris employs a replica mechanism and failover mechanism to ensure data high availability and reliability. - **Scalability:** Doris can easily scale up to hundreds of nodes to meet growing data demands. - **Ease of Use:** Doris supports standard SQL syntax and provides a rich set of APIs and tools for developers. # 2. Doris Storage Architecture ### 2.1 Columnar Storage Principles #### 2.1.1 Data Layout and Compression Doris adopts a columnar storage architecture that stores data on disk by column. This approach has several advantages compared to traditional row-based storage: ***High Data Compression Rate:** Similar data types and values within the same column lead to more efficient compression. ***Faster Query Speed:** Only relevant columns are read during queries, reducing IO overhead. ***Good Scalability:** Columns can be added or removed easily without affecting other columns' data. Doris uses various compression algorithms, including Snappy, Zlib, and LZ4, to further enhance data compression rates. #### 2.1.2 Data Partitioning and Replicas To enhance query performance and data reliability, Doris partitions data into multiple segments. Each partition contains records within a specific time or data range. Doris also supports data replication to ensure data redundancy and high availability. Replicas can be stored on different machines, so if one machine fails, other replicas can provide data service. ### 2.2 Storage Engine Implementation #### 2.2.1 Storage Formats and Indexes Doris uses Parquet file format for data storage. Parquet is a columnar storage format that supports various compression algorithms and encoding schemes. Doris supports multiple index types, including Bloom filters, bitmap indexes, and skip list indexes. These indexes can accelerate query performance, especially for filtering and aggregation operations. #### 2.2.2 Data Loading and Updates Doris supports various data loading methods, including: ***Streaming Loading:** Real-time loading of data through Kafka or other streaming data sources. ***Batch Loading:** Loading large amounts of data through files or HDFS. ***Incremental Loading:** Only loading the data that has been updated since the last load. Doris also supports data update operations, including insertion, update, and deletion. Update operations are implemented by writing to a WAL (Write-Ahead Log) to ensure data consistency and reliability. **Code Block:** ```python import doris # Create a Doris client client = doris.Client("***.*.*.*", 8030) # Create a table client.create_table("test_table", { "id": "INT", "name": "STRING", "age": "INT" }) # Load data client.load_data("test_table", "hdfs://path/to/data.parquet") # Query data result = client.query("SELECT * FROM test_table") # Print results for row in result: print(row) ``` **Logical Analysis:** This code demonstrates how to use the Doris client to create tables, load data, and query data. * The `create_table` function is used to create a table and specify the column names and data types. * The `load_data` function is used to load data from HDFS into the table. * The `query` function is used to query data in the table. * The `result` variable is a generator that iterates over the query results. * The `for` loop is used to print each row in the query results. **Parameter Explanation:** * `client`: Doris client object. * `table_name`: Name of the table to create or query. * `schema`: Columns and data types of the table. * `data_path`: Path of the data to be loaded. * `sql`: SQL query to execute. # 3. Doris Query Engine ### 3.1 Query Optimizer The query optimizer is the core component of the Doris query engine, responsible for converting user queries into efficient execution plans. #### 3.1.1 Query Plan Generation The query optimizer first performs syntactic and semantic analysis on the user query, generating a query tree. Then, it applies a series of optimization rules to optimize the query tree, such as: - **Predicate Pushdown:** Pushing predicate conditions down to subqueries or join operations to reduce the amount of data that needs to be processed. - **Join Reordering:** Reordering join operations to optimize the execution plan, e.g., using hash join or nested loop join. - **Subquery Unnesting:** Unnesting subqueries into inline views to eliminate unnecessary nested queries. #### 3.1.2 Cost Estimation After generating query plans, the query optimizer performs cost estimation for each plan to choose the optimal execution plan. Cost estimation is based on statistical information, such as table size, column cardinality, and query predicate selectivity. ### 3.2 Execution Engine The execution engine is responsible for executing query plans. It uses vectorized and parallel execution techniques to improve query performance. #### 3.2.1 Vectorized Execution Vectorized execution organizes data in the query into vectors rather than processing data row by row. This significantly reduces memory access and CPU overhead, thereby increasing query speed. For example, the following code demonstrates an example of vectorized execution: ```python import numpy as np # Create a DataFrame with 10 million rows of data df = pd.DataFrame({'col1': np.random.randint(1000, size=***), 'col2': np.random.rand(***)}) # Query using vectorized execution result = df.query('col1 > 500 and col2 < 0.5') ``` #### 3.2.2 Parallel Execution Parallel execution breaks down query tasks into multiple subtasks and executes these subtasks in parallel on multiple computing nodes. This significantly reduces query time, especially when dealing with large datasets. For example, the following mermaid flowchart illustrates an example of parallel execution: ```mermaid sequenceDiagram participant User participant Query Optimizer participant Execution Engine User->Query Optimizer: Send query Query Optimizer->Execution Engine: Generate execution plan Execution Engine->User: Return execution plan Execution Engine->Node 1: Execute subtask 1 Execution Engine->Node 2: Execute subtask 2 Node 1->Execution Engine: Return subtask 1 result Node 2->Execution Engine: Return subtask 2 result Execution Engine->User: Return query result ``` # 4. Doris Application Scenarios Doris database showcases its powerful performance and flexible architecture in a variety of application scenarios. This chapter will delve into Doris's applications in real-time analytics and offline analytics domains and provide specific examples and best practices. ## 4.1 Real-Time Analytics Real-time analytics refers to the processing and analysis of continuously changing data in real-time to obtain the latest insights. Doris has several advantages in real-time analytics: - **Low Latency Data Ingestion:** Doris supports various data ingestion methods, including Kafka, Flume, and HTTP API, allowing for fast and efficient ingestion of streaming data. - **Real-Time Computing:** Doris's query engine supports stream processing, enabling real-time computation and aggregation of incoming data to generate real-time dashboards and alerts. ### 4.1.1 Stream Processing Doris can serve as a stream processing platform for real-time analysis of streaming data from various sources. Its streaming processing capabilities include: - **Window Functions:** Doris supports a variety of window functions, such as sliding windows, hopping windows, and session windows, enabling grouping and aggregation of streaming data. - **Time Series Analysis:** Doris provides a rich set of time series analysis functions for trend analysis, anomaly detection, and forecasting of time series data. ```sql CREATE TABLE stream_data ( user_id INT, event_time TIMESTAMP, event_type STRING, event_value DOUBLE ) ENGINE=OLAP DISTRIBUTED BY HASH(user_id) BUCKETS 10; INSERT INTO stream_data (user_id, event_time, event_type, event_value) VALUES (1, '2023-03-08 10:00:00', 'purchase', 100.00), (2, '2023-03-08 10:05:00', 'view', 10.00), (3, '2023-03-08 10:10:00', 'purchase', 200.00); SELECT user_id, SUM(event_value) AS total_value FROM stream_data WHERE event_time >= '2023-03-08 10:00:00' GROUP BY user_id WINDOW AS (PARTITION BY user_id ORDER BY event_time ROWS BETWEEN 1 PRECEDING AND CURRENT ROW); ``` ### 4.1.2 Real-Time Dashboards Doris can act as the underlying data source for real-time dashboards, providing real-time visual data insights to users. Its real-time dashboard features include: - **Dashboard Building:** Doris supports building real-time dashboards through SQL statements or third-party tools, displaying various metrics and charts. - **Data Refreshing:** Doris's real-time dashboards can automatically refresh data, ensuring users always see the latest information. ## 4.2 Offline Analytics Offline analytics refers to the batch processing and analysis of historical data to obtain long-term trends and patterns. Doris has several advantages in offline analytics: - **Big Data Processing:** Doris can process vast amounts of data, supporting PB-level storage and analytics. - **Flexible Data Models:** Doris supports flexible data models, adapting easily to ever-changing business needs. ### 4.2.1 Big Data Processing Doris can serve as a big data processing platform, analyzing big data from various sources. Its big data processing features include: - **Data Importing:** Doris supports various data importing methods, including Hive, HDFS, and CSV files, enabling efficient importation of large-scale data. - **Data Processing:** Doris provides a rich set of SQL functions and UDFs for various data processing operations, such as filtering, aggregation, and transformation. ```sql CREATE TABLE sales_data ( order_id INT, product_id INT, quantity INT, sales_amount DOUBLE ) ENGINE=OLAP DISTRIBUTED BY HASH(order_id) BUCKETS 10; INSERT INTO sales_data (order_id, product_id, quantity, sales_amount) SELECT order_id, product_id, SUM(quantity), SUM(sales_amount) FROM raw_sales_data GROUP BY order_id, product_id; SELECT product_id, SUM(sales_amount) AS total_sales FROM sales_data GROUP BY product_id; ``` ### 4.2.2 Data Warehouse Doris can act as a data warehouse, providing a unified data view for enterprises and supporting multidimensional analysis and decision-making. Its data warehouse features include: - **Data Integration:** Doris can integrate data from various sources, including relational databases, NoSQL databases, and file systems. - **Data Modeling:** Doris supports flexible data modeling, capable of building star schemas, snowflake schemas, and dimension models. # 5. Doris Best Practices ### 5.1 Performance Tuning #### 5.1.1 Hardware Configuration Optimization ***CPU:** Choose CPUs with high frequencies and sufficient core counts to meet query processing needs. ***Memory:** Allocate adequate memory to cache query data and intermediate results, reducing disk IO. ***Storage:** Use SSD or NVMe storage devices to improve data read speeds. ***Network:** Ensure network bandwidth and latency meet the requirements for parallel query execution. #### 5.1.2 SQL Statement Optimization ***Use Columnar Storage Formats:** Doris utilizes columnar storage, optimizing query performance for specific columns. ***Avoid Full Table Scans:** Use WHERE clauses and indexes to filter data, reducing the amount of data scanned. ***Use Vectorized Execution:** Doris supports vectorized execution, processing multiple data rows at once, increasing query speed. ***Optimize JOIN Operations:** Use appropriate JOIN algorithms (e.g., Nested Loop Join, Hash Join) and consider data distribution. ***Use Materialized Views:** Pre-calculate frequently queried data and store it in materialized views to increase query speed. ### 5.2 Operations Management #### 5.2.1 Cluster Deployment and Monitoring ***Cluster Deployment:** Choose an appropriate cluster size and configuration based on business needs and data volume. ***Monitoring:** Use monitoring tools (e.g., Prometheus, Grafana) to monitor the health of the cluster, including CPU, memory, storage, and network usage. #### 5.2.2 Fault Handling and Recovery ***Fault Handling:** Establish fault handling mechanisms, including automatic failover, data backup, and recovery. ***Data Backup:** Regularly back up data to prevent data loss and consider off-site backups to enhance disaster recovery capabilities. ***Data Recovery:** Use backup data to recover the cluster in the event of a failure and minimize data loss.
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

pptx
在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。
pdf
在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。

LI_李波

资深数据库专家
北理工计算机硕士,曾在一家全球领先的互联网巨头公司担任数据库工程师,负责设计、优化和维护公司核心数据库系统,在大规模数据处理和数据库系统架构设计方面颇有造诣。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

揭秘Xilinx FPGA中的CORDIC算法:从入门到精通的6大步骤

![揭秘Xilinx FPGA中的CORDIC算法:从入门到精通的6大步骤](https://opengraph.githubassets.com/4272a5ca199b449924fd88f8a18b86993e87349793c819533d8d67888bc5e5e4/ruanyf/weekly/issues/3183) # 摘要 本文系统地介绍了CORDIC算法及其在FPGA平台上的实现与应用。首先,概述了CORDIC算法的基本原理和数学基础,重点解释了向量旋转、坐标变换公式以及角度计算与迭代逼近的细节。接着,详细说明了在Xilinx FPGA开发环境中CORDIC算法的硬件设计流

ARCGIS精度保证:打造精确可靠分幅图的必知技巧

![ARCGIS精度保证:打造精确可靠分幅图的必知技巧](https://i0.hdslb.com/bfs/archive/babc0691ed00d6f6f1c9f6ca9e2c70fcc7fb10f4.jpg@960w_540h_1c.webp) # 摘要 本文探讨了ARCGIS精度保证的重要性、理论基础、实践应用、高级技巧以及案例分析。精度保证在ARCGIS应用中至关重要,关系到数据的可靠性和结果的准确性。文章首先介绍了精度保证的基本概念、原则和数学基础,然后详细讨论了在分幅图制作中应用精度保证的实践技巧,包括其流程、关键步骤以及精度测试方法。进而在高级技巧章节中,阐述了更高层次的数学

MBI5253.pdf:架构师的视角解读技术挑战与解决方案

![MBI5253.pdf:架构师的视角解读技术挑战与解决方案](https://www.simform.com/wp-content/uploads/2022/04/Microservices.png) # 摘要 本文全面探讨了软件架构设计中的技术挑战,并提供了对应的理论基础和实践解决方案。文章首先概述了架构设计中面临的各种技术挑战,接着深入分析了系统架构模式、数据管理策略以及系统可伸缩性和高可用性的关键因素。在实践问题解决方面,文中通过代码优化、性能瓶颈分析和安全性挑战的探讨,提供了切实可行的解决策略。最后,本文还探讨了技术创新与应用,并强调了架构师的职业发展与团队协作的重要性。通过这些

STM32 CAN模块性能优化课:硬件配置与软件调整的黄金法则

![STM32 CAN模块性能优化课:硬件配置与软件调整的黄金法则](https://3roam.com/wp-content/uploads/2023/11/UART-clock-rate-16x.png) # 摘要 本文全面系统地介绍了STM32 CAN模块的基础知识、硬件配置优化、软件层面性能调整、性能测试与问题诊断,以及实战演练中如何打造高性能的CAN模块应用。文章首先概述了STM32 CAN模块的基本架构和原理,接着详细讨论了硬件连接、电气特性以及高速和低速CAN网络的设计与应用。在软件层面,文中探讨了初始化配置、通信协议实现和数据处理优化。性能测试章节提供了测试方法、问题诊断和案

工业自动化控制技术全解:掌握这10个关键概念,实践指南带你飞

![工业自动化控制技术全解:掌握这10个关键概念,实践指南带你飞](https://www.semcor.net/content/uploads/2019/12/01-featured.png) # 摘要 工业自动化控制技术是现代制造业不可或缺的一部分,涉及从基础理论到实践应用的广泛领域。本文首先概述了工业自动化控制技术,并探讨了自动化控制系统的组成、工作原理及分类。随后,文章深入讨论了自动化控制技术在实际中的应用,包括传感器和执行器的选择与应用、PLC编程与系统集成优化。接着,本文分析了工业网络与数据通信技术,着重于工业以太网和现场总线技术标准以及数据通信的安全性。此外,进阶技术章节探讨了

【install4j插件开发全攻略】:扩展install4j功能与特性至极致

![【install4j插件开发全攻略】:扩展install4j功能与特性至极致](https://opengraph.githubassets.com/d89305011ab4eda37042b9646d0f1b0207a86d4d9de34ad7ba1f835c8b71b94f/jchinte/py4j-plugin) # 摘要 install4j是一个功能强大的多平台Java应用程序打包和安装程序生成器。本文首先介绍了install4j插件开发的基础知识,然后深入探讨了其架构中的核心组件、定制化特性和插件机制。通过实践案例,本文进一步展示了如何搭建开发环境、编写、测试和优化插件,同时强

【C++ Builder入门到精通】:简体中文版完全学习指南

![【C++ Builder入门到精通】:简体中文版完全学习指南](https://assets-global.website-files.com/5f02f2ca454c471870e42fe3/5f8f0af008bad7d860435afd_Blog%205.png) # 摘要 本文详细介绍了C++ Builder的开发环境,从基础语法、控制结构、类和对象,到可视化组件的使用,再到数据库编程和高级编程技巧,最后涉及项目实战与优化。本文不仅提供了一个全面的C++ Builder学习路径,还包括了安装配置、数据库连接和优化调试等实战技巧,为开发者提供了一个从入门到精通的完整指南。通过本文的

【Twig与CMS的和谐共处】:如何在内容管理系统中使用Twig模板

![【Twig与CMS的和谐共处】:如何在内容管理系统中使用Twig模板](https://unlimited-elements.com/wp-content/uploads/2021/07/twig.png) # 摘要 本文全面介绍了Twig模板引擎的各个方面,包括基础语法、构造、在CMS平台中的应用,以及安全性、性能优化和高级用法。通过深入探讨Twig的基本概念、控制结构、扩展系统和安全策略,本文提供了在不同CMS平台集成Twig的详细指导和最佳实践。同时,文章还强调了Twig模板设计模式、调试技术,以及与其他现代技术融合的可能性。案例研究揭示了Twig在实际大型项目中的成功应用,并对其

蓝牙降噪耳机设计要点:无线技术整合的专业建议

![蓝牙降噪耳机](https://i0.hdslb.com/bfs/article/e4717332fdd6e009e15a399ad9e9e9909448beea.jpg) # 摘要 蓝牙降噪耳机技术是无线音频设备领域的一项创新,它将蓝牙技术的便捷性和降噪技术的高效性相结合,为用户提供高质量的音频体验和噪音抑制功能。本文从蓝牙技术的基础和音频传输原理讲起,深入探讨了蓝牙与降噪技术的融合,并分析了降噪耳机设计的硬件考量,包括耳机硬件组件的选择、电路设计、电源管理等关键因素。此外,本文还讨论了软件和固件在降噪耳机中的关键作用,以及通过测试与品质保证来确保产品性能。文章旨在为设计、开发和改进蓝

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )