Unveiling the Doris Database Architecture: A Comprehensive Analysis from Storage to Querying

发布时间: 2024-09-14 22:25:20 阅读量: 10 订阅数: 19
# 1. Doris Database Overview Doris is an open-source distributed MPP (Massively Parallel Processing) database designed for large-scale data analytics. It utilizes columnar storage and MPP architecture to efficiently process petabyte-level data and offers sub-second query response times. Key features of Doris include: - **High Performance:** Columnar storage and MPP architecture enable Doris to quickly process large-scale data queries. - **High Availability:** Doris employs a replica mechanism and failover mechanism to ensure data high availability and reliability. - **Scalability:** Doris can easily scale up to hundreds of nodes to meet growing data demands. - **Ease of Use:** Doris supports standard SQL syntax and provides a rich set of APIs and tools for developers. # 2. Doris Storage Architecture ### 2.1 Columnar Storage Principles #### 2.1.1 Data Layout and Compression Doris adopts a columnar storage architecture that stores data on disk by column. This approach has several advantages compared to traditional row-based storage: ***High Data Compression Rate:** Similar data types and values within the same column lead to more efficient compression. ***Faster Query Speed:** Only relevant columns are read during queries, reducing IO overhead. ***Good Scalability:** Columns can be added or removed easily without affecting other columns' data. Doris uses various compression algorithms, including Snappy, Zlib, and LZ4, to further enhance data compression rates. #### 2.1.2 Data Partitioning and Replicas To enhance query performance and data reliability, Doris partitions data into multiple segments. Each partition contains records within a specific time or data range. Doris also supports data replication to ensure data redundancy and high availability. Replicas can be stored on different machines, so if one machine fails, other replicas can provide data service. ### 2.2 Storage Engine Implementation #### 2.2.1 Storage Formats and Indexes Doris uses Parquet file format for data storage. Parquet is a columnar storage format that supports various compression algorithms and encoding schemes. Doris supports multiple index types, including Bloom filters, bitmap indexes, and skip list indexes. These indexes can accelerate query performance, especially for filtering and aggregation operations. #### 2.2.2 Data Loading and Updates Doris supports various data loading methods, including: ***Streaming Loading:** Real-time loading of data through Kafka or other streaming data sources. ***Batch Loading:** Loading large amounts of data through files or HDFS. ***Incremental Loading:** Only loading the data that has been updated since the last load. Doris also supports data update operations, including insertion, update, and deletion. Update operations are implemented by writing to a WAL (Write-Ahead Log) to ensure data consistency and reliability. **Code Block:** ```python import doris # Create a Doris client client = doris.Client("***.*.*.*", 8030) # Create a table client.create_table("test_table", { "id": "INT", "name": "STRING", "age": "INT" }) # Load data client.load_data("test_table", "hdfs://path/to/data.parquet") # Query data result = client.query("SELECT * FROM test_table") # Print results for row in result: print(row) ``` **Logical Analysis:** This code demonstrates how to use the Doris client to create tables, load data, and query data. * The `create_table` function is used to create a table and specify the column names and data types. * The `load_data` function is used to load data from HDFS into the table. * The `query` function is used to query data in the table. * The `result` variable is a generator that iterates over the query results. * The `for` loop is used to print each row in the query results. **Parameter Explanation:** * `client`: Doris client object. * `table_name`: Name of the table to create or query. * `schema`: Columns and data types of the table. * `data_path`: Path of the data to be loaded. * `sql`: SQL query to execute. # 3. Doris Query Engine ### 3.1 Query Optimizer The query optimizer is the core component of the Doris query engine, responsible for converting user queries into efficient execution plans. #### 3.1.1 Query Plan Generation The query optimizer first performs syntactic and semantic analysis on the user query, generating a query tree. Then, it applies a series of optimization rules to optimize the query tree, such as: - **Predicate Pushdown:** Pushing predicate conditions down to subqueries or join operations to reduce the amount of data that needs to be processed. - **Join Reordering:** Reordering join operations to optimize the execution plan, e.g., using hash join or nested loop join. - **Subquery Unnesting:** Unnesting subqueries into inline views to eliminate unnecessary nested queries. #### 3.1.2 Cost Estimation After generating query plans, the query optimizer performs cost estimation for each plan to choose the optimal execution plan. Cost estimation is based on statistical information, such as table size, column cardinality, and query predicate selectivity. ### 3.2 Execution Engine The execution engine is responsible for executing query plans. It uses vectorized and parallel execution techniques to improve query performance. #### 3.2.1 Vectorized Execution Vectorized execution organizes data in the query into vectors rather than processing data row by row. This significantly reduces memory access and CPU overhead, thereby increasing query speed. For example, the following code demonstrates an example of vectorized execution: ```python import numpy as np # Create a DataFrame with 10 million rows of data df = pd.DataFrame({'col1': np.random.randint(1000, size=***), 'col2': np.random.rand(***)}) # Query using vectorized execution result = df.query('col1 > 500 and col2 < 0.5') ``` #### 3.2.2 Parallel Execution Parallel execution breaks down query tasks into multiple subtasks and executes these subtasks in parallel on multiple computing nodes. This significantly reduces query time, especially when dealing with large datasets. For example, the following mermaid flowchart illustrates an example of parallel execution: ```mermaid sequenceDiagram participant User participant Query Optimizer participant Execution Engine User->Query Optimizer: Send query Query Optimizer->Execution Engine: Generate execution plan Execution Engine->User: Return execution plan Execution Engine->Node 1: Execute subtask 1 Execution Engine->Node 2: Execute subtask 2 Node 1->Execution Engine: Return subtask 1 result Node 2->Execution Engine: Return subtask 2 result Execution Engine->User: Return query result ``` # 4. Doris Application Scenarios Doris database showcases its powerful performance and flexible architecture in a variety of application scenarios. This chapter will delve into Doris's applications in real-time analytics and offline analytics domains and provide specific examples and best practices. ## 4.1 Real-Time Analytics Real-time analytics refers to the processing and analysis of continuously changing data in real-time to obtain the latest insights. Doris has several advantages in real-time analytics: - **Low Latency Data Ingestion:** Doris supports various data ingestion methods, including Kafka, Flume, and HTTP API, allowing for fast and efficient ingestion of streaming data. - **Real-Time Computing:** Doris's query engine supports stream processing, enabling real-time computation and aggregation of incoming data to generate real-time dashboards and alerts. ### 4.1.1 Stream Processing Doris can serve as a stream processing platform for real-time analysis of streaming data from various sources. Its streaming processing capabilities include: - **Window Functions:** Doris supports a variety of window functions, such as sliding windows, hopping windows, and session windows, enabling grouping and aggregation of streaming data. - **Time Series Analysis:** Doris provides a rich set of time series analysis functions for trend analysis, anomaly detection, and forecasting of time series data. ```sql CREATE TABLE stream_data ( user_id INT, event_time TIMESTAMP, event_type STRING, event_value DOUBLE ) ENGINE=OLAP DISTRIBUTED BY HASH(user_id) BUCKETS 10; INSERT INTO stream_data (user_id, event_time, event_type, event_value) VALUES (1, '2023-03-08 10:00:00', 'purchase', 100.00), (2, '2023-03-08 10:05:00', 'view', 10.00), (3, '2023-03-08 10:10:00', 'purchase', 200.00); SELECT user_id, SUM(event_value) AS total_value FROM stream_data WHERE event_time >= '2023-03-08 10:00:00' GROUP BY user_id WINDOW AS (PARTITION BY user_id ORDER BY event_time ROWS BETWEEN 1 PRECEDING AND CURRENT ROW); ``` ### 4.1.2 Real-Time Dashboards Doris can act as the underlying data source for real-time dashboards, providing real-time visual data insights to users. Its real-time dashboard features include: - **Dashboard Building:** Doris supports building real-time dashboards through SQL statements or third-party tools, displaying various metrics and charts. - **Data Refreshing:** Doris's real-time dashboards can automatically refresh data, ensuring users always see the latest information. ## 4.2 Offline Analytics Offline analytics refers to the batch processing and analysis of historical data to obtain long-term trends and patterns. Doris has several advantages in offline analytics: - **Big Data Processing:** Doris can process vast amounts of data, supporting PB-level storage and analytics. - **Flexible Data Models:** Doris supports flexible data models, adapting easily to ever-changing business needs. ### 4.2.1 Big Data Processing Doris can serve as a big data processing platform, analyzing big data from various sources. Its big data processing features include: - **Data Importing:** Doris supports various data importing methods, including Hive, HDFS, and CSV files, enabling efficient importation of large-scale data. - **Data Processing:** Doris provides a rich set of SQL functions and UDFs for various data processing operations, such as filtering, aggregation, and transformation. ```sql CREATE TABLE sales_data ( order_id INT, product_id INT, quantity INT, sales_amount DOUBLE ) ENGINE=OLAP DISTRIBUTED BY HASH(order_id) BUCKETS 10; INSERT INTO sales_data (order_id, product_id, quantity, sales_amount) SELECT order_id, product_id, SUM(quantity), SUM(sales_amount) FROM raw_sales_data GROUP BY order_id, product_id; SELECT product_id, SUM(sales_amount) AS total_sales FROM sales_data GROUP BY product_id; ``` ### 4.2.2 Data Warehouse Doris can act as a data warehouse, providing a unified data view for enterprises and supporting multidimensional analysis and decision-making. Its data warehouse features include: - **Data Integration:** Doris can integrate data from various sources, including relational databases, NoSQL databases, and file systems. - **Data Modeling:** Doris supports flexible data modeling, capable of building star schemas, snowflake schemas, and dimension models. # 5. Doris Best Practices ### 5.1 Performance Tuning #### 5.1.1 Hardware Configuration Optimization ***CPU:** Choose CPUs with high frequencies and sufficient core counts to meet query processing needs. ***Memory:** Allocate adequate memory to cache query data and intermediate results, reducing disk IO. ***Storage:** Use SSD or NVMe storage devices to improve data read speeds. ***Network:** Ensure network bandwidth and latency meet the requirements for parallel query execution. #### 5.1.2 SQL Statement Optimization ***Use Columnar Storage Formats:** Doris utilizes columnar storage, optimizing query performance for specific columns. ***Avoid Full Table Scans:** Use WHERE clauses and indexes to filter data, reducing the amount of data scanned. ***Use Vectorized Execution:** Doris supports vectorized execution, processing multiple data rows at once, increasing query speed. ***Optimize JOIN Operations:** Use appropriate JOIN algorithms (e.g., Nested Loop Join, Hash Join) and consider data distribution. ***Use Materialized Views:** Pre-calculate frequently queried data and store it in materialized views to increase query speed. ### 5.2 Operations Management #### 5.2.1 Cluster Deployment and Monitoring ***Cluster Deployment:** Choose an appropriate cluster size and configuration based on business needs and data volume. ***Monitoring:** Use monitoring tools (e.g., Prometheus, Grafana) to monitor the health of the cluster, including CPU, memory, storage, and network usage. #### 5.2.2 Fault Handling and Recovery ***Fault Handling:** Establish fault handling mechanisms, including automatic failover, data backup, and recovery. ***Data Backup:** Regularly back up data to prevent data loss and consider off-site backups to enhance disaster recovery capabilities. ***Data Recovery:** Use backup data to recover the cluster in the event of a failure and minimize data loss.
corwn 最低0.47元/天 解锁专栏
送3个月
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

zip
1、资源项目源码均已通过严格测试验证,保证能够正常运行;、 2项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行;、 2项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
zip
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 、 1资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看READmE.文件(md如有),本项目仅用作交流学习参考,请切勿用于商业用途。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。

LI_李波

资深数据库专家
北理工计算机硕士,曾在一家全球领先的互联网巨头公司担任数据库工程师,负责设计、优化和维护公司核心数据库系统,在大规模数据处理和数据库系统架构设计方面颇有造诣。

专栏目录

最低0.47元/天 解锁专栏
送3个月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【递归与迭代决策指南】:如何在Python中选择正确的循环类型

# 1. 递归与迭代概念解析 ## 1.1 基本定义与区别 递归和迭代是算法设计中常见的两种方法,用于解决可以分解为更小、更相似问题的计算任务。**递归**是一种自引用的方法,通过函数调用自身来解决问题,它将问题简化为规模更小的子问题。而**迭代**则是通过重复应用一系列操作来达到解决问题的目的,通常使用循环结构实现。 ## 1.2 应用场景 递归算法在需要进行多级逻辑处理时特别有用,例如树的遍历和分治算法。迭代则在数据集合的处理中更为常见,如排序算法和简单的计数任务。理解这两种方法的区别对于选择最合适的算法至关重要,尤其是在关注性能和资源消耗时。 ## 1.3 逻辑结构对比 递归

【Python项目管理工具大全】:使用Pipenv和Poetry优化依赖管理

![【Python项目管理工具大全】:使用Pipenv和Poetry优化依赖管理](https://codedamn-blog.s3.amazonaws.com/wp-content/uploads/2021/03/24141224/pipenv-1-Kphlae.png) # 1. Python依赖管理的挑战与需求 Python作为一门广泛使用的编程语言,其包管理的便捷性一直是吸引开发者的亮点之一。然而,在依赖管理方面,开发者们面临着各种挑战:从包版本冲突到环境配置复杂性,再到生产环境的精确复现问题。随着项目的增长,这些挑战更是凸显。为了解决这些问题,需求便应运而生——需要一种能够解决版本

【Python字典的并发控制】:确保数据一致性的锁机制,专家级别的并发解决方案

![【Python字典的并发控制】:确保数据一致性的锁机制,专家级别的并发解决方案](https://media.geeksforgeeks.org/wp-content/uploads/20211109175603/PythonDatabaseTutorial.png) # 1. Python字典并发控制基础 在本章节中,我们将探索Python字典并发控制的基础知识,这是在多线程环境中处理共享数据时必须掌握的重要概念。我们将从了解为什么需要并发控制开始,然后逐步深入到Python字典操作的线程安全问题,最后介绍一些基本的并发控制机制。 ## 1.1 并发控制的重要性 在多线程程序设计中

Python索引的局限性:当索引不再提高效率时的应对策略

![Python索引的局限性:当索引不再提高效率时的应对策略](https://ask.qcloudimg.com/http-save/yehe-3222768/zgncr7d2m8.jpeg?imageView2/2/w/1200) # 1. Python索引的基础知识 在编程世界中,索引是一个至关重要的概念,特别是在处理数组、列表或任何可索引数据结构时。Python中的索引也不例外,它允许我们访问序列中的单个元素、切片、子序列以及其他数据项。理解索引的基础知识,对于编写高效的Python代码至关重要。 ## 理解索引的概念 Python中的索引从0开始计数。这意味着列表中的第一个元素

索引与数据结构选择:如何根据需求选择最佳的Python数据结构

![索引与数据结构选择:如何根据需求选择最佳的Python数据结构](https://blog.finxter.com/wp-content/uploads/2021/02/set-1-1024x576.jpg) # 1. Python数据结构概述 Python是一种广泛使用的高级编程语言,以其简洁的语法和强大的数据处理能力著称。在进行数据处理、算法设计和软件开发之前,了解Python的核心数据结构是非常必要的。本章将对Python中的数据结构进行一个概览式的介绍,包括基本数据类型、集合类型以及一些高级数据结构。读者通过本章的学习,能够掌握Python数据结构的基本概念,并为进一步深入学习奠

Python查找实践:避免陷阱与错误,写出最佳代码

![Python查找实践:避免陷阱与错误,写出最佳代码](https://avatars.dzeninfra.ru/get-zen_doc/8220767/pub_63fed6468c99ca0633756013_63fee8500909f173ca08af2f/scale_1200) # 1. Python查找的理论基础 在学习任何编程语言的过程中,理解查找的基础理论至关重要,尤其在Python中,高效的查找技术可以显著提高程序性能和代码质量。本章将从理论的角度简要介绍查找的基本概念、数据结构中的查找效率,以及它们在Python中的应用。 ## 1.1 查找的定义与重要性 查找是计算机

Python装饰模式实现:类设计中的可插拔功能扩展指南

![python class](https://i.stechies.com/1123x517/userfiles/images/Python-Classes-Instances.png) # 1. Python装饰模式概述 装饰模式(Decorator Pattern)是一种结构型设计模式,它允许动态地添加或修改对象的行为。在Python中,由于其灵活性和动态语言特性,装饰模式得到了广泛的应用。装饰模式通过使用“装饰者”(Decorator)来包裹真实的对象,以此来为原始对象添加新的功能或改变其行为,而不需要修改原始对象的代码。本章将简要介绍Python中装饰模式的概念及其重要性,为理解后

Python列表与数据库:列表在数据库操作中的10大应用场景

![Python列表与数据库:列表在数据库操作中的10大应用场景](https://media.geeksforgeeks.org/wp-content/uploads/20211109175603/PythonDatabaseTutorial.png) # 1. Python列表与数据库的交互基础 在当今的数据驱动的应用程序开发中,Python语言凭借其简洁性和强大的库支持,成为处理数据的首选工具之一。数据库作为数据存储的核心,其与Python列表的交互是构建高效数据处理流程的关键。本章我们将从基础开始,深入探讨Python列表与数据库如何协同工作,以及它们交互的基本原理。 ## 1.1

Python list remove与列表推导式的内存管理:避免内存泄漏的有效策略

![Python list remove与列表推导式的内存管理:避免内存泄漏的有效策略](https://www.tutorialgateway.org/wp-content/uploads/Python-List-Remove-Function-4.png) # 1. Python列表基础与内存管理概述 Python作为一门高级编程语言,在内存管理方面提供了众多便捷特性,尤其在处理列表数据结构时,它允许我们以极其简洁的方式进行内存分配与操作。列表是Python中一种基础的数据类型,它是一个可变的、有序的元素集。Python使用动态内存分配来管理列表,这意味着列表的大小可以在运行时根据需要进

Python函数性能优化:时间与空间复杂度权衡,专家级代码调优

![Python函数性能优化:时间与空间复杂度权衡,专家级代码调优](https://files.realpython.com/media/memory_management_3.52bffbf302d3.png) # 1. Python函数性能优化概述 Python是一种解释型的高级编程语言,以其简洁的语法和强大的标准库而闻名。然而,随着应用场景的复杂度增加,性能优化成为了软件开发中的一个重要环节。函数是Python程序的基本执行单元,因此,函数性能优化是提高整体代码运行效率的关键。 ## 1.1 为什么要优化Python函数 在大多数情况下,Python的直观和易用性足以满足日常开发

专栏目录

最低0.47元/天 解锁专栏
送3个月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )