Unveiling Doris Database: The Secret Weapon of the New Generation of Distributed Databases

发布时间: 2024-09-14 22:24:22 阅读量: 25 订阅数: 28
# 1. An Introduction to Doris Database Doris is an open-source distributed MPP database, designed specifically for big data analytics. It employs columnar storage and vectorized execution engines, enabling efficient processing of massive datasets and rapid query responses. Doris is suitable for a wide range of data analytics scenarios, including data warehousing, real-time analytics, and IoT data processing. Doris boasts the following features: - **High Performance:** Columnar storage and vectorized execution engines significantly boost query performance. - **High Availability:** Utilizing a replica mechanism and failover, Doris ensures data is highly available. - **Scalability:** With a distributed architecture, Doris can easily scale to meet growing data volume and query demands. - **Ease of Use:** Doris is compatible with standard SQL and supports various data sources and formats. # 2. Doris Database Architecture and Principles ### 2.1 Distributed Storage Architecture Doris adopts a distributed storage architecture, distributing data across multiple nodes for enhanced data processing capabilities and fault tolerance. #### 2.1.1 Data Sharding and Replicas To achieve distributed storage, Doris divides data into multiple shards, each stored on different nodes. The shard size can be adjusted based on data volume and query patterns. In addition, to ensure data reliability, Doris uses a replica mechanism to copy each shard to multiple replica nodes. The number of replicas can be configured based on data importance and availability requirements. #### 2.1.2 Data Consistency Assurance In a distributed storage architecture, data consistency assurance is crucial. Doris employs a two-phase commit protocol (2PC) to guarantee data consistency. The 2PC protocol involves two phases: 1. **Preparation Phase:** The coordinator sends a prepare commit request to all replica nodes; the nodes return a ready state. 2. **Commit Phase:** The coordinator sends a commit request to all replica nodes, which execute the commit operation. Should a fault occur during the preparation or commit phase, the coordinator will roll back the operation, ensuring data consistency. ### 2.2 Query Engine Optimization The Doris query engine is highly optimized to support fast and efficient queries. #### 2.2.1 Columnar Storage and Vectorized Execution Doris utilizes a columnar storage format, storing data by column rather than by row. This storage format reduces the amount of data read, enhancing query efficiency. Furthermore, Doris supports vectorized execution, processing multiple data rows at once rather than one at a time. Vectorized execution fully utilizes the parallel processing capabilities of modern CPUs, further increasing query speed. #### 2.2.2 Materialized Views and Pre-Aggregation Materialized views are precomputed and stored query results that significantly improve performance for subsequent identical queries. Doris supports materialized views, allowing users to create them for frequently queried data. When users query this data again, Doris retrieves results directly from materialized views without recalculating, greatly enhancing query efficiency. Pre-aggregation is another technique to optimize query performance. Pre-aggregation aggregates data onto different dimensions and metrics in advance, reducing the data volume required for queries, thus increasing query speed. ### 2.3 High Availability and Fault Tolerance Mechanisms Doris offers high availability and fault tolerance to ensure data security and service stability. #### 2.3.1 Replica Mechanism and Failover As mentioned, Doris uses a replica mechanism to ensure data reliability. If a replica node fails, Doris automatically replicates data to other replica nodes, ensuring no data loss. Additionally, Doris supports failover, automatically transferring data and tasks from a failed node to other healthy nodes, ensuring uninterrupted service. #### 2.3.2 Data Recovery and Disaster Recovery Doris offers data recovery and disaster recovery mechanisms to handle data loss or disaster scenarios. Data Recovery: Doris supports data recovery, allowing users to restore lost data from backups. Disaster Recovery: Doris supports disaster recovery, enabling users to redeploy the Doris cluster on other data centers or cloud platforms and recover data from backups, ensuring business continuity. # 3. Practical Applications of Doris Database ### 3.1 Data Warehousing and Analysis #### 3.1.1 Data Modeling and Loading Data warehouses are enterprise-level data storage systems designed to support decision-making analytics. Doris, as a distributed columnar storage database, has the following advantages in the data warehouse scenario: - **Columnar Storage:** Doris employs a columnar storage format, grouping similar column data together, greatly enhancing query efficiency. - **Vectorized Execution:** Doris supports vectorized execution, processing multiple data rows at once, further improving query performance. - **Materialized Views:** Doris supports materialized views, allowing the precomputation and storage of complex query results, significantly reducing query time. Doris data modeling follows star or snowflake schemas, where fact tables contain extensive detailed data, and dimension tables hold descriptive information. The data loading process typically involves the following steps: 1. **Data Extraction:** Extract data from source systems, such as relational databases and log files. 2. **Data Transformation:** Convert data into a Doris-compatible format, including data type conversion and data cleansing. 3. **Data Loading:** Use Doris-provided loading tools (such as Stream Load, Broker Load) to load data into Doris tables. #### 3.1.2 SQL Queries and Analy*** ***mon query operations include: - **Aggregate Queries:** Grouping, aggregating, and sorting data, such as sum, average, maximum, etc. - **Join Queries:** Connecting relevant data from different tables, such as fact tables and dimension tables. - **Subqueries:** Embedding other queries within the main query to obtain more complex data. Doris's query optimizer automatically selects the optimal execution plan based on query conditions and table structures. For instance, for aggregate queries, Doris utilizes materialized views or pre-aggregated tables to accelerate the queries. ### 3.2 Real-time Data Processing #### 3.2.1 Stream Data Collection and Processing Doris supports stream data collection and processing, ***mon streaming data sources include: - **Kafka:** A distributed message queue system suitable for real-time data transfer on a large scale. - **Flume:** A distributed log collection and processing system suitable for data collection from various sources. - **Custom Data Sources:** Users can develop custom data source plugins to connect to specific data sources. Doris provides stream data loading tools (such as Stream Load) that can directly load streaming data into Doris tables. The loading process typically involves the following steps: 1. **Creating Stream Load Tasks:** Specify the data source, Doris table, data format, and loading strategy. 2. **Starting Stream Load Tasks:** Doris continuously reads data from the data source and loads it into the table. 3. **Monitoring Stream Load Tasks:** Check the loading progress, error information, and performance metrics. #### 3.2.2 Real-time Analysis and Visualization Doris supports real-time analysis and visualization, ***mon real-time analysis tools include: - **Doris Dashboard:** An interactive dashboard for creating and managing dashboards that provide real-time data visualization. - **Third-party BI Tools:** Such as Tableau, Power BI, can connect to Doris to create interactive visualizations. Doris's real-time analysis capabilities enable enterprises to quickly respond to business changes, promptly identify issues, and take action. ### 3.3 IoT and Edge Computing #### 3.3.1 Sensor Data Collection and Storage Doris can be used to store and manage massive sensor data from IoT devices. Sensor data typically has the following characteristics: - **High Concurrency:** IoT devices continuously generate a large amount of data, requiring high concurrency processing capabilities from the database. - **Large Data Volume:** Sensor data often includes a significant amount of time-series data, necessitating high storage capacity from the database. - **Structured Data:** Sensor data usually has a clear data structure, making it suitable for columnar storage formats. The columnar storage and vectorized execution features of Doris are well-suited for processing IoT sensor data. Additionally, Doris supports time-series data compression, effectively reducing storage costs. #### 3.3.2 Edge Computing and Data Preprocessing Edge computing involves data processing near the data source to reduce data transmission latency and costs. Doris can be deployed on edge devices to perform data preprocessing and filtering, then transmit the processed data to the cloud for further analysis. Edge computing significantly improves the responsiveness and efficiency of IoT applications. Doris's lightweight and scalability make it an ideal choice for edge computing scenarios. # 4. Advanced Applications of Doris Database ### 4.1 Data Science and Machine Learning The Doris database has extensive applications in data science and machine learning, offering data scientists and machine learning engineers powerful data processing and analysis capabilities. #### 4.1.1 Data Preparation and Feature Engineering Before training machine learning models, data preparation and feature engineering are crucial. Doris provides efficient data loading and transformation functions for rapid processing of massive data and supports user-defined functions and extension modules for complex data transformation and feature engineering tasks. For example, the following code block demonstrates how to preprocess data and extract features using Doris's built-in functions and user-defined functions: ```sql -- Load raw data LOAD DATA INFILE "data.csv" INTO TABLE raw_data; -- Use built-in functions for data transformation CREATE TABLE preprocessed_data AS SELECT user_id, CASE WHEN age < 18 THEN 'Minor' WHEN age >= 18 AND age < 65 THEN 'Adult' ELSE 'Senior' END AS age_group, gender, city FROM raw_data; -- Use user-defined functions for feature extraction CREATE FUNCTION get_user_profile(user_id INT) RETURNS STRING; -- ...User-defined function implementation... CREATE TABLE user_profiles AS SELECT user_id, get_user_profile(user_id) AS user_profile FROM preprocessed_data; ``` #### 4.1.2 Machine Learning Model Training and Evaluation Doris supports integration with popular machine learning frameworks (such as TensorFlow, PyTorch), allowing users to directly train and evaluate machine learning models in the Doris database. For example, the following code block shows how to use Doris's UDF (User-Defined Function) interface to train a simple linear regression model: ```sql -- Create UDF CREATE FUNCTION train_linear_regression(data_table STRING) RETURNS DOUBLE; -- ...UDF implementation... -- Train model SET @model = train_linear_regression('user_profiles'); -- Evaluate model SELECT user_id, predicted_value, actual_value, predicted_value - actual_value AS error FROM user_profiles JOIN ( SELECT user_id, @model(user_profile) AS predicted_value ) AS predictions ON user_id = user_id; ``` ### 4.2 Geographic Spatial Data Processing Doris provides robust geographic spatial data processing capabilities, supporting the storage, management, querying, and analysis of geographic spatial data. #### 4.2.1 Storage and Management of Geographic Spatial Data Doris supports various geographic spatial data types, such as points, lines, polygons, and multi-polygons, and offers efficient geographic spatial indexing for quick retrieval and location of geographic spatial data. For example, the following code block shows how to load geographic spatial data into the Doris database: ```sql CREATE TABLE geospatial_data ( id INT, name STRING, location GEOGRAPHY ); LOAD DATA INFILE "geospatial_data.csv" INTO TABLE geospatial_data; ``` #### 4.2.2 Spatial Queries and Analysis Doris supports a variety of spatial query and analysis functions, such as spatial range queries, nearest neighbor queries, and spatial aggregation queries. For example, the following code block demonstrates how to use Doris's spatial query functionality to find all geographic spatial objects within a specified area: ```sql SELECT * FROM geospatial_data WHERE ST_Contains(ST_GeomFromText('POLYGON((1 1, 10 1, 10 10, 1 10, 1 1))'), location); ``` ### 4.3 Custom Functions and Extensions Doris allows users to write custom functions and extension modules to extend the database's functionality and processing capabilities. #### 4.3.1 Writing and Using Custom Functions Custom functions can be used to perform complex data transformations, feature extractions, or other custom operations. Doris supports writing custom functions in various programming languages (such as Java, Python, C++). For example, the following code block shows how to write a custom function to calculate the distance between two geographic spatial objects: ```java public class DistanceFunction implements UDF { @Override public Object evaluate(Object[] args) { if (args.length != 2) { throw new IllegalArgumentException("Invalid number of arguments"); } Geography location1 = (Geography) args[0]; Geography location2 = (Geography) args[1]; return location1.distance(location2); } } ``` #### 4.3.2 Developing and Integrating Extension Modules Extension modules can be used to extend Doris database functions, such as adding new data sources, storage engines, or analysis algorithms. Doris provides a flexible extension mechanism that allows users to develop and integrate their own extension modules. For example, the following code block demonstrates how to develop an extension module to read and process CSV files: ```c++ #include "extension_base.h" class CSVReaderExtension : public ExtensionBase { public: CSVReaderExtension() : ExtensionBase("csv_reader") {} virtual Status init() override { // ...initialize extension module... } virtual Status execute(const std::vector<TExprNode*>& args, TExprNode** result) override { // ...execute CSV reading operation... } }; ``` # 5. Future Development and Prospects for Doris Database** As an excellent analytical database, Doris will continue to experience rapid growth and expand its application areas in the future. The following is an analysis of the future development and prospects for the Doris database: ### 5.1 Cloud-native and Containerization With the proliferation of cloud computing, cloud-native technology has become a trend in database development. Doris will further embrace the cloud-native architecture, supporting deployment and management on container orchestration platforms such as Kubernetes. This will streamline the deployment and operations of the Doris database and enhance its elasticity and scalability. ### 5.2 Deep Integration with AI and Machine Learning AI and machine learning technologies are reshaping industries, and Doris will also deeply integrate with AI technology. By integrating with machine learning algorithms, the Doris database can achieve smarter data analysis and predictions, providing users with deeper insights. ### 5.3 Ecosystem and Community Development Doris has an active community and ecosystem. In the future, Doris will continue to strengthen cooperation with other open-source projects and communities, building a more comprehensive ecosystem. With the collective efforts of the community, the Doris database will continuously improve its functionality and provide users with a richer range of application scenarios.
corwn 最低0.47元/天 解锁专栏
买1年送1年
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

LI_李波

资深数据库专家
北理工计算机硕士,曾在一家全球领先的互联网巨头公司担任数据库工程师,负责设计、优化和维护公司核心数据库系统,在大规模数据处理和数据库系统架构设计方面颇有造诣。

专栏目录

最低0.47元/天 解锁专栏
买1年送1年
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【gganimate脚本编写与管理】:构建高效动画工作流的策略

![【gganimate脚本编写与管理】:构建高效动画工作流的策略](https://melies.com/wp-content/uploads/2021/06/image29-1024x481.png) # 1. gganimate脚本编写与管理概览 随着数据可视化技术的发展,动态图形已成为展现数据变化趋势的强大工具。gganimate,作为ggplot2的扩展包,为R语言用户提供了创建动画的简便方法。本章节我们将初步探讨gganimate的基本概念、核心功能以及如何高效编写和管理gganimate脚本。 首先,gganimate并不是一个完全独立的库,而是ggplot2的一个补充。利用

数据科学中的艺术与科学:ggally包的综合应用

![数据科学中的艺术与科学:ggally包的综合应用](https://statisticsglobe.com/wp-content/uploads/2022/03/GGally-Package-R-Programming-Language-TN-1024x576.png) # 1. ggally包概述与安装 ## 1.1 ggally包的来源和特点 `ggally` 是一个为 `ggplot2` 图形系统设计的扩展包,旨在提供额外的图形和工具,以便于进行复杂的数据分析。它由 RStudio 的数据科学家与开发者贡献,允许用户在 `ggplot2` 的基础上构建更加丰富和高级的数据可视化图

【复杂图表制作】:ggimage包在R中的策略与技巧

![R语言数据包使用详细教程ggimage](https://statisticsglobe.com/wp-content/uploads/2023/04/Introduction-to-ggplot2-Package-R-Programming-Lang-TNN-1024x576.png) # 1. ggimage包简介与安装配置 ## 1.1 ggimage包简介 ggimage是R语言中一个非常有用的包,主要用于在ggplot2生成的图表中插入图像。这对于数据可视化领域来说具有极大的价值,因为它允许图表中更丰富的视觉元素展现。 ## 1.2 安装ggimage包 ggimage包的安

数据驱动的决策制定:ggtech包在商业智能中的关键作用

![数据驱动的决策制定:ggtech包在商业智能中的关键作用](https://opengraph.githubassets.com/bfd3eb25572ad515443ce0eb0aca11d8b9c94e3ccce809e899b11a8a7a51dabf/pratiksonune/Customer-Segmentation-Analysis) # 1. 数据驱动决策制定的商业价值 在当今快速变化的商业环境中,数据驱动决策(Data-Driven Decision Making, DDDM)已成为企业制定策略的关键。这一过程不仅依赖于准确和及时的数据分析,还要求能够有效地将这些分析转化

R语言ggradar多层雷达图:展示多级别数据的高级技术

![R语言数据包使用详细教程ggradar](https://i2.wp.com/img-blog.csdnimg.cn/20200625155400808.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2h5MTk0OXhp,size_16,color_FFFFFF,t_70) # 1. R语言ggradar多层雷达图简介 在数据分析与可视化领域,ggradar包为R语言用户提供了强大的工具,用于创建直观的多层雷达图。这些图表是展示

ggflags包的国际化问题:多语言标签处理与显示的权威指南

![ggflags包的国际化问题:多语言标签处理与显示的权威指南](https://www.verbolabs.com/wp-content/uploads/2022/11/Benefits-of-Software-Localization-1024x576.png) # 1. ggflags包介绍及国际化问题概述 在当今多元化的互联网世界中,提供一个多语言的应用界面已经成为了国际化软件开发的基础。ggflags包作为Go语言中处理多语言标签的热门工具,不仅简化了国际化流程,还提高了软件的可扩展性和维护性。本章将介绍ggflags包的基础知识,并概述国际化问题的背景与重要性。 ## 1.1

ggthemes包热图制作全攻略:从基因表达到市场分析的图表创建秘诀

# 1. ggthemes包概述和安装配置 ## 1.1 ggthemes包简介 ggthemes包是R语言中一个非常强大的可视化扩展包,它提供了多种主题和图表风格,使得基于ggplot2的图表更为美观和具有专业的视觉效果。ggthemes包包含了一系列预设的样式,可以迅速地应用到散点图、线图、柱状图等不同的图表类型中,让数据分析师和数据可视化专家能够快速产出高质量的图表。 ## 1.2 安装和加载ggthemes包 为了使用ggthemes包,首先需要在R环境中安装该包。可以使用以下R语言命令进行安装: ```R install.packages("ggthemes") ```

高级统计分析应用:ggseas包在R语言中的实战案例

![高级统计分析应用:ggseas包在R语言中的实战案例](https://www.encora.com/hubfs/Picture1-May-23-2022-06-36-13-91-PM.png) # 1. ggseas包概述与基础应用 在当今数据分析领域,ggplot2是一个非常流行且功能强大的绘图系统。然而,在处理时间序列数据时,标准的ggplot2包可能还不够全面。这正是ggseas包出现的初衷,它是一个为ggplot2增加时间序列处理功能的扩展包。本章将带领读者走进ggseas的世界,从基础应用开始,逐步展开ggseas包的核心功能。 ## 1.1 ggseas包的安装与加载

ggmosaic包技巧汇总:提升数据可视化效率与效果的黄金法则

![ggmosaic包技巧汇总:提升数据可视化效率与效果的黄金法则](https://opengraph.githubassets.com/504eef28dbcf298988eefe93a92bfa449a9ec86793c1a1665a6c12a7da80bce0/ProjectMOSAIC/mosaic) # 1. ggmosaic包概述及其在数据可视化中的重要性 在现代数据分析和统计学中,有效地展示和传达信息至关重要。`ggmosaic`包是R语言中一个相对较新的图形工具,它扩展了`ggplot2`的功能,使得数据的可视化更加直观。该包特别适合创建莫氏图(mosaic plot),用

R语言机器学习可视化:ggsic包展示模型训练结果的策略

![R语言机器学习可视化:ggsic包展示模型训练结果的策略](https://training.galaxyproject.org/training-material/topics/statistics/images/intro-to-ml-with-r/ggpairs5variables.png) # 1. R语言在机器学习中的应用概述 在当今数据科学领域,R语言以其强大的统计分析和图形展示能力成为众多数据科学家和统计学家的首选语言。在机器学习领域,R语言提供了一系列工具,从数据预处理到模型训练、验证,再到结果的可视化和解释,构成了一个完整的机器学习工作流程。 机器学习的核心在于通过算

专栏目录

最低0.47元/天 解锁专栏
买1年送1年
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )