Quick Start Guide to Doris Development: Building Efficient Database Applications

发布时间: 2024-09-14 22:26:26 阅读量: 46 订阅数: 35
ZIP

孵化器-doris:Apache Doris(正在孵化)

# 1. Overview of Doris ### 1.1 Introduction to Doris Doris is an open-source, distributed MPP (Massively Parallel Processing) database designed to handle vast amounts of data and high-concurrency queries. Utilizing a columnar storage engine, it supports high compression ratios and rapid query responses. Doris is widely applied in finance, telecommunications, the Internet of Things, and other fields, offering robust data processing capabilities for real-time analytics, data warehousing, and machine learning scenarios. ### 1.2 Doris Architecture and Features Doris employs a distributed architecture composed of FE (Frontend) and BE (Backend) components. The FE is responsible for metadata management, query parsing, and optimization, while the BE handles data storage and computation. Doris features include: - **High Performance:** Columnar storage, parallel computing, and vectorized execution engines enable sub-second query responses. - **High Availability:** With replication, data sharding, and automatic fault recovery mechanisms, Doris ensures data security and service stability. - **High Scalability:** Its horizontally scalable architecture supports elastic scaling to accommodate growing data volumes and concurrency demands. - **Low Cost:** Being open-source with an active community, Doris eliminates the need for costly commercial licenses, reducing enterprise operational expenses. # 2. Doris Data Modeling ### 2.1 Data Types and Table Design Doris supports a rich set of built-in data types, including Boolean, integer, floating-point, string, and date-time types. Selecting appropriate data types during table design is crucial for ensuring data accuracy and optimizing storage and query performance. **Principles for Choosing Data Types:** ***Boolean:** Used for representing true/false values. ***Integer:** For representing integer values, including both unsigned (UNSIGNED) and signed (SIGNED) integers. ***Floating-Point:** For representing floating-point values, including single (FLOAT) and double (DOUBLE) precision. ***String:** For representing textual data, encompassing fixed-length (CHAR) and variable-length (VARCHAR) strings. ***Date-Time:** For representing date and time information, including date (DATE), time (TIME), and datetime (DATETIME). **Best Practices for Table Design:** ***Select Suitable Primary Keys:** The primary key uniquely identifies a table. Choose columns with high uniqueness and infrequent changes. ***Normalize Data:** Decompose data into multiple tables to avoid redundancy and ensure data consistency. ***Use Foreign Key Constraints:** Define relationships between tables to maintain data integrity. ***Optimize Data Distribution:** Through partitioning and replication strategies, uniformly distribute data across different nodes to enhance query performance. ### 2.2 Partitioning and Replication Strategies Partitioning and replication are critical data management mechanisms in Doris, and proper partitioning and replication strategies can optimize data storage and query performance. **Partitioning:** * Data within a table is divided into multiple partitions based on specific rules, each a separate data block. * Partitions can be divided based on time, range, or hash values. * Advantages of partitioning: * Reduces data scanning scope, improving query performance. * Simplifies data management, such as data deletion, import, and export. **Replication:** * Multiple replicas are created for each partition, stored on different nodes. * Benefits of replication: * Enhances data reliability, preventing data loss due to single points of failure. * Enables load balancing, improving query concurrency. **Selecting Partitioning and Replication Strategies:** ***Partitioning Strategy:** Choose an appropriate partitioning strategy based on data distribution and query patterns. ***Replication Strategy:** Select the number of replicas based on data importance and reliability requirements. ### 2.3 Data Loading and Management Doris offers various data loading methods, including import tools, streaming loads, and external tables. **Import Tools:** ***Doris Loader:** Official command-line tool provided by Doris supports loading data from local files, HDFS, Hive, and other data sources. ***Third-Party Tools:** Tools like Sqoop, DataX, etc., support loading data from relational and NoSQL databases. **Streaming Loads:** ***Kafka Connector:** Stream data from Kafka into Doris using the Kafka Connector. ***Flink Connector:** Stream data from Flink into Doris using the Flink Connector. **External Tables:** * Treat external data sources (like Hive tables, HDFS files) as Doris tables for querying without importing data into Doris. **Data Management Operations:** ***Data Deletion:** Supports deleting data by partition, time range, or condition. ***Data Modification:** Supports update, delete, and insert operations. ***Data Import/Export:** Supports importing or exporting data to local files, HDFS, Hive, and other data sources. # 3.1 Query Principles and Execution Plans #### Query Principles Doris uses an MPP (Massively Parallel Processing) architecture to divide query tasks into multiple subtasks, which are executed in parallel on different nodes. Each node processes a portion of the data, with the results aggregated and returned to the client. #### Execution Plans Doris's execution plan is divided into logical and physical plans. The logical plan describes the semantics of the query, while the physical plan details the specific steps of execution. **Logical Plan** The logical plan is generated by the parser, converting SQL queries into a series of logical operators like projection, filtering, and aggregation. Logical operators are connected through data flows, forming a logical execution plan. **Physical Plan** The physical plan is generated by the optimizer, transforming the logical plan into a series of physical operators like scanning, sorting, and hash joins. Physical operators are connected through data flows, forming a physical execution plan. The optimizer selects the optimal physical plan based on factors like data distribution, index information, and query cost. ### 3.2 Indexes and Materialized Views #### Indexes Doris supports various indexes, including: - **Primary Key Index:** For quickly locating data corresponding to primary key values. - **Secondary Index:** For quickly finding data corresponding to non-primary key values. - **Bitmap Index:** For rapidly filtering data. Indexes can significantly enhance query performance, especially when queries involve large amounts of data. #### Materialized Views Materialized views are precomputed and stored query results. When queries involve complex computations or aggregations, using materialized views can avoid redundant calculations, thereby improving query performance. ### 3.3 Query Optimization Tips #### Utilize Indexes Indexes are one of the most effective methods for improving query performance. When designing table structures, consider creating indexes for frequently queried fields. #### Avoid Full Table Scans Full table scans examine all data in a table and are inefficient. Use indexes or partition filters to avoid full table scans whenever possible. #### Use Partitions Partitions can divide data into smaller chunks, enhancing query performance. Partition tables based on query patterns and data distribution. #### Use Materialized Views Materialized views precompute and store query results, improving query performance. Consider creating materialized views for frequently queried complex computations or aggregations. #### Optimize Query Statements Optimize query statements to avoid unnecessary computations and data transfers. Use the EXPLAIN command to view the query execution plan and optimize accordingly. # 4. Doris Application Development ### 4.1 SQL Programming and API Usage Doris supports standard SQL syntax and provides rich extensions, enabling users to easily query and manage data. Users can interact with Doris using SQL command-line tools or through JDBC/ODBC drivers in programming languages. **SQL Programming** Here's an example of using SQL to query a Doris table: ```sql SELECT * FROM table_name WHERE column_name = 'value'; ``` **API Usage** Doris also offers APIs for programming languages such as Java, Python, C++, allowing users to interact with Doris programmatically. These APIs provide access to all Doris features, including data querying, data loading, and cluster management. Here's an example of using the Java API to query a Doris table: ```java import com.baidu.palo.jdbc.PaloDriver; import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.SQLException; import java.sql.Statement; public class DorisQueryExample { public static void main(String[] args) throws SQLException { // Load Doris driver DriverManager.registerDriver(new PaloDriver()); // Establish connection Connection conn = DriverManager.getConnection("jdbc:palo://localhost:8030", "root", "password"); // Create Statement Statement stmt = conn.createStatement(); // Execute query ResultSet rs = stmt.executeQuery("SELECT * FROM table_name WHERE column_name = 'value'"); // Traverse result set while (rs.next()) { System.out.println(rs.getString(1)); } // Close connection rs.close(); stmt.close(); conn.close(); } } ``` ### 4.2 Data Integration and Processing Doris offers a range of functions to easily integrate and process data. **Data Integration** Doris supports importing data from various sources, including filesystems, relational databases, and NoSQL databases. Users can use Doris's provided import tools or programmatic APIs to import data into Doris. **Data Processing** Doris provides a series of built-in functions and operators for various data processing operations, including filtering, sorting, aggregation, and joining. Users can also leverage Doris's UDF (User-Defined Functions) mechanism to create custom functions. ### 4.3 Doris Integration with Other Systems Doris can integrate with other systems to provide a more comprehensive data analysis solution. **Integration with BI Tools** Doris supports integration with popular BI tools like Tableau, Power BI, and Google Data Studio. Users can create interactive dashboards and reports to visualize and analyze data within Doris. **Integration with Machine Learning Platforms** Doris can integrate with machine learning platforms like TensorFlow and PyTorch. Users can use Doris as a data source for training and inferencing machine learning models and leverage machine learning platforms to build and deploy models. # 5. Doris Operations and Monitoring **5.1 Cluster Management and Monitoring** Doris cluster management and monitoring are primarily achieved through the Doris Manager toolset and Prometheus+Grafana. **Doris Manager** Doris Manager is a web-based management interface that offers the following functionalities: - Monitoring of cluster topology and node status - Slow query analysis - Resource usage monitoring - Alert and notification management **Prometheus+Grafana** Prometheus is an open-source monitoring and alerting system, and Grafana is a visualization dashboard and graphing tool. The Doris community provides a Prometheus exporter that can export Doris metrics to Prometheus, which are then visualized and monitored through Grafana. **5.2 Troubleshooting and Performance Optimization** **Troubleshooting** ***mon troubleshooting steps include: - Checking the Doris Manager and Prometheus monitoring dashboards - Reviewing log files (e.g., fe.log, be.log) - Using Doris diagnostic tools (e.g., doris-diag) **Performance Optimization** Doris performance optimization involves the following aspects: - **Hardware Optimization:** Selecting appropriate hardware configurations, such as CPU, memory, and storage. - **Query Optimization:** Using indexes, materialized views, and query tuning techniques to optimize query performance. - **Cluster Configuration Optimization:** Adjusting cluster configuration parameters, such as replica factor, partition strategies, and resource allocation. - **Data Loading Optimization:** Using batch loading, parallel loading, and data compression techniques to optimize data loading performance. **5.3 Doris Ecosystem and Community** Doris boasts an active community and a rich ecosystem, including: - **Community Forums:** The Doris community forum is a platform for discussing Doris-related issues. - **Contributor Community:** Doris welcomes community contributors to participate in code development, documentation writing, and testing. - **Third-Party Tools:** The community has developed various third-party tools, such as Doris Manager, Prometheus exporter, and data migration tools.
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

LI_李波

资深数据库专家
北理工计算机硕士,曾在一家全球领先的互联网巨头公司担任数据库工程师,负责设计、优化和维护公司核心数据库系统,在大规模数据处理和数据库系统架构设计方面颇有造诣。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

ARM处理器:揭秘模式转换与中断处理优化实战

![ARM处理器:揭秘模式转换与中断处理优化实战](https://img-blog.csdn.net/2018051617531432?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l3Y3BpZw==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 摘要 本文详细探讨了ARM处理器模式转换和中断处理机制的基础知识、理论分析以及优化实践。首先介绍ARM处理器的运行模式和中断处理的基本流程,随后分析模式转换的触发机制及其对中断处理的影响。文章还提出了一系列针对模式转换与中断

高可靠性系统的秘密武器:IEC 61709在系统设计中的权威应用

![高可靠性系统的秘密武器:IEC 61709在系统设计中的权威应用](https://img-blog.csdnimg.cn/3436bf19e37340a3ac1a39b45152ca65.jpeg) # 摘要 IEC 61709标准作为高可靠性系统设计的重要指导,详细阐述了系统可靠性预测、元器件选择以及系统安全与维护的关键要素。本文从标准概述出发,深入解析其对系统可靠性基础理论的贡献以及在高可靠性概念中的应用。同时,本文讨论了IEC 61709在元器件选择中的指导作用,包括故障模式分析和选型要求。此外,本文还探讨了该标准在系统安全评估和维护策略中的实际应用,并分析了现代系统设计新趋势下

【CEQW2高级用户速成】:掌握性能优化与故障排除的关键技巧

![【CEQW2高级用户速成】:掌握性能优化与故障排除的关键技巧](https://img-blog.csdnimg.cn/direct/67e5a1bae3a4409c85cb259b42c35fc2.png) # 摘要 本文旨在全面探讨系统性能优化与故障排除的有效方法与实践。从基础的系统性能分析出发,涉及性能监控指标、数据采集与分析、性能瓶颈诊断等关键方面。进一步,文章提供了硬件升级、软件调优以及网络性能优化的具体策略和实践案例,强调了故障排除的重要性,并介绍了故障排查的步骤、方法和高级技术。最后,强调最佳实践的重要性,包括性能优化计划的制定、故障预防与应急响应机制,以及持续改进与优化的

Zkteco智慧考勤数据ZKTime5.0:5大技巧高效导入导出

![Zkteco智慧考勤数据ZKTime5.0:5大技巧高效导入导出](http://blogs.vmware.com/networkvirtualization/files/2019/04/Istio-DP.png) # 摘要 Zkteco智慧考勤系统作为企业级时间管理和考勤解决方案,其数据导入导出功能是日常管理中的关键环节。本文旨在提供对ZKTime5.0版本数据导入导出操作的全面解析,涵盖数据结构解析、操作界面指导,以及高效数据导入导出的实践技巧。同时,本文还探讨了高级数据处理功能,包括数据映射转换、脚本自动化以及第三方工具的集成应用。通过案例分析,本文分享了实际应用经验,并对考勤系统

揭秘ABAP事件处理:XD01增强中事件使用与调试的终极攻略

![揭秘ABAP事件处理:XD01增强中事件使用与调试的终极攻略](https://www.erpqna.com/simple-event-handling-abap-oops/10-15) # 摘要 本文全面介绍了ABAP事件处理的相关知识,包括事件的基本概念、类型、声明与触发机制,以及如何进行事件的增强与实现。深入分析了XD01事件的具体应用场景和处理逻辑,并通过实践案例探讨了事件增强的挑战和解决方案。文中还讨论了ABAP事件调试技术,如调试环境的搭建、事件流程的跟踪分析,以及调试过程中的性能优化技巧。最后,本文探讨了高级事件处理技术,包含事件链、事件分发、异常处理和事件日志记录,并着眼

数值分析经典题型详解:哈工大历年真题集锦与策略分析

![数值分析经典题型详解:哈工大历年真题集锦与策略分析](https://media.geeksforgeeks.org/wp-content/uploads/20240429163511/Applications-of-Numerical-Analysis.webp) # 摘要 本论文首先概述了数值分析的基本概念及其在哈工大历年真题中的应用。随后详细探讨了数值误差、插值法、逼近问题、数值积分与微分等核心理论,并结合历年真题提供了解题思路和实践应用。论文还涉及数值分析算法的编程实现、效率优化方法以及算法在工程问题中的实际应用。在前沿发展部分,分析了高性能计算、复杂系统中的数值分析以及人工智能

Java企业级应用安全构建:local_policy.jar与US_export_policy.jar的实战运用

![local_policy.jar与US_export_policy.jar资源包](https://slideplayer.com/slide/13440592/80/images/5/Change+Security+Files+in+Java+-+2.jpg) # 摘要 随着企业级Java应用的普及,Java安全架构的安全性问题愈发受到重视。本文系统地介绍了Java安全策略文件的解析、创建、修改、实施以及管理维护。通过深入分析local_policy.jar和US_export_policy.jar的安全策略文件结构和权限配置示例,本文探讨了企业级应用中安全策略的具体实施方法,包括权限

【海康产品定制化之路】:二次开发案例精选

![【海康产品定制化之路】:二次开发案例精选](https://media.licdn.com/dms/image/D4D12AQFKK2EmPc8QVg/article-cover_image-shrink_720_1280/0/1688647658996?e=2147483647&v=beta&t=Hna9tf3IL5eeFfD4diM_hgent8XgcO3iZgIborG8Sbw) # 摘要 本文综合概述了海康产品定制化的基础理论与实践技巧。首先,对海康产品的架构进行了详细解析,包括硬件平台和软件架构组件。接着,系统地介绍了定制化开发流程,涵盖需求分析、项目规划、开发测试、部署维护等

提高效率:proUSB注册机文件优化技巧与稳定性提升

![提高效率:proUSB注册机文件优化技巧与稳定性提升](https://i0.hdslb.com/bfs/article/banner/956a888b8f91c9d47a2fad85867a12b5225211a2.png) # 摘要 本文详细介绍了proUSB注册机的功能和优化策略。首先,对proUSB注册机的工作原理进行了阐述,并对其核心算法和注册码生成机制进行了深入分析。接着,从代码、系统和硬件三个层面探讨了提升性能的策略。进一步地,本文分析了提升稳定性所需采取的故障排除、容错机制以及负载均衡措施,并通过实战案例展示了优化实施和效果评估。最后,本文对proUSB注册机的未来发展趋

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )