The Rivalry of Distributed Databases: A Deep Comparison of Doris and ClickHouse

发布时间: 2024-09-14 22:31:32 阅读量: 30 订阅数: 35
RAR

SNK vs Capcom - Rivalry Conclusion:SNK vs Capcom Fangame 8位风格-开源

# 1. Overview of Distributed Databases A distributed database is a system that distributes data across multiple computers at different physical locations. This distributed architecture offers several advantages, including: ***Scalability:** Distributed databases can easily scale to handle increasing amounts of data by adding more nodes. ***High Availability:** If one node fails, other nodes can take over its workload, ensuring data is always available. ***Low Latency:** Distributed databases can place data close to the user's geographical location, reducing latency and improving performance. # 2. Doris Database ### 2.1 Architecture and Principles of Doris Database #### 2.1.1 Doris Database's Storage Model Doris database utilizes a columnar storage model, storing data on disk by column. This storage model offers several advantages: - **High Data Compression Rate:** Since columnar storage only stores data of the same type, it can use efficient compression algorithms to greatly increase data compression rates. - **High Query Performance:** When queries involve specific columns, columnar storage can read only the relevant columns, avoiding unnecessary data reads, thus improving query performance. - **Good Scalability:** Columnar storage can easily add or remove columns without reorganizing the entire dataset, making Doris highly scalable. #### 2.1.2 Doris Database's Query Engine Doris database uses Apache Impala as its query engine. Impala is an MPP (Massively Parallel Processing) query engine that can parallelize query tasks across multiple nodes, improving query performance. Impala supports various query types, including: - **Interactive Queries:** Supports low-latency interactive queries suitable for real-time analysis and data exploration. - **Batch Queries:** Supports large-scale data processing tasks, such as ETL and data warehousing. - **Real-Time Queries:** Supports real-time queries on streaming data, suitable for the Internet of Things and online analysis. ### 2.2 Advantages and Disadvantages of Doris Database #### 2.2.1 Advantages of Doris Database - **High Performance:** The columnar storage model and MPP query engine enable Doris database to have extremely high query performance. - **High Compression Rate:** The columnar storage model can compress data effectively, saving storage space. - **High Scalability:** Doris can easily scale up to hundreds of nodes to meet growing data volume and query demands. - **Low Cost:** Compared to other commercial distributed databases, Doris database is open-source software, offering a cost advantage. #### 2.2.2 Disadvantages of Doris Database - **Lower Data Update Performance:** Due to the characteristics of the columnar storage model, Doris database has lower data update performance compared to row-based storage databases. - **No Transaction Support:** Doris does not support transactions, limiting its use in certain application scenarios. - **Weaker Data Consistency Guarantee:** Doris uses a eventual consistency model, which may lead to data inconsistency in certain cases. # 3. ClickHouse Database ### 3.1 Architecture and Principles of ClickHouse Database #### 3.1.1 ClickHouse Database's Storage Model ClickHouse database uses a columnar storage model, storing data on disk by column. This storage model offers several advantages: - **High Data Compression Rate:** Columnar storage can compress data of the same type, thus improving data compression rates. - **Fast Query Speed:** Columnar storage avoids scanning unnecessary data during queries, thus improving query speed. - **Good Scalability:** Columnar storage can easily scale to multiple nodes, enhancing the overall performance of the database. The storage model of ClickHouse database mainly includes the following components: - **Data Chunk:*
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

LI_李波

资深数据库专家
北理工计算机硕士,曾在一家全球领先的互联网巨头公司担任数据库工程师,负责设计、优化和维护公司核心数据库系统,在大规模数据处理和数据库系统架构设计方面颇有造诣。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

STM32F030C8T6专攻:最小系统扩展与高效通信策略

![STM32F030C8T6专攻:最小系统扩展与高效通信策略](https://img-blog.csdnimg.cn/2ac003a310bf4a53961dbb9057bd24d4.png) # 摘要 本文首先介绍了STM32F030C8T6微控制器的基础知识和最小系统设计的要点,涵盖硬件设计、软件配置及最小系统扩展应用案例。接着深入探讨了高效通信技术,包括不同通信协议的使用和通信策略的优化。最后,文章通过项目管理与系统集成的实践案例,展示了如何在实际项目中应用这些技术和知识,进行项目规划、系统集成、测试及故障排除,以提高系统的可靠性和效率。 # 关键字 STM32F030C8T6;

【PyCharm专家教程】:如何在PyCharm中实现Excel自动化脚本

![【PyCharm专家教程】:如何在PyCharm中实现Excel自动化脚本](https://datascientest.com/wp-content/uploads/2022/05/pycharm-1-1024x443.jpg) # 摘要 本文旨在全面介绍PyCharm集成开发环境以及其在Excel自动化处理中的应用。文章首先概述了PyCharm的基本功能和Python环境配置,进而深入探讨了Python语言基础和PyCharm高级特性。接着,本文详细介绍了Excel自动化操作的基础知识,并着重分析了openpyxl和Pandas两个Python库在自动化任务中的运用。第四章通过实践案

ARM处理器时钟管理精要:工作模式协同策略解析

![ARM处理器时钟管理精要:工作模式协同策略解析](https://d3i71xaburhd42.cloudfront.net/1845325114ce99e2861d061c6ec8f438842f5b41/2-Figure1-1.png) # 摘要 本文系统性地探讨了ARM处理器的时钟管理基础及其工作模式,包括处理器运行模式、异常模式以及模式间的协同关系。文章深入分析了时钟系统架构、动态电源管理技术(DPM)及协同策略,揭示了时钟管理在提高处理器性能和降低功耗方面的重要性。同时,通过实践应用案例的分析,本文展示了基于ARM的嵌入式系统时钟优化策略及其效果评估,并讨论了时钟管理常见问题的

【提升VMware性能】:虚拟机高级技巧全解析

![【提升VMware性能】:虚拟机高级技巧全解析](https://www.paolodaniele.it/wp-content/uploads/2016/09/schema_vmware_esxi4.jpg) # 摘要 随着虚拟化技术的广泛应用,VMware作为市场主流的虚拟化平台,其性能优化问题备受关注。本文综合探讨了VMware在虚拟硬件配置、网络性能、系统和应用层面以及高可用性和故障转移等方面的优化策略。通过分析CPU资源分配、内存管理、磁盘I/O调整、网络配置和操作系统调优等关键技术点,本文旨在提供一套全面的性能提升方案。此外,文章还介绍了性能监控和分析工具的运用,帮助用户及时发

【CEQW2数据分析艺术】:生成报告与深入挖掘数据洞察

![CEQW2用户手册](https://static-data2.manualslib.com/docimages/i4/81/8024/802314-panasonic/1-qe-ql102.jpg) # 摘要 本文全面探讨了数据分析的艺术和技术,从报告生成的基础知识到深入的数据挖掘方法,再到数据分析工具的实际应用和未来趋势。第一章概述了数据分析的重要性,第二章详细介绍了数据报告的设计和高级技术,包括报告类型选择、数据可视化和自动化报告生成。第三章深入探讨了数据分析的方法论,涵盖数据清洗、统计分析和数据挖掘技术。第四章探讨了关联规则、聚类分析和时间序列分析等更高级的数据洞察技术。第五章将

UX设计黄金法则:打造直觉式移动界面的三大核心策略

![UX设计黄金法则:打造直觉式移动界面的三大核心策略](https://multimedija.info/wp-content/uploads/2023/01/podrocja_mobile_uporabniska-izkusnja-eng.png) # 摘要 随着智能移动设备的普及,直觉式移动界面设计成为提升用户体验的关键。本文首先概述移动界面设计,随后深入探讨直觉式设计的理论基础,包括用户体验设计简史、核心设计原则及心理学应用。接着,本文提出打造直觉式移动界面的实践策略,涉及布局、导航、交互元素以及内容呈现的直觉化设计。通过案例分析,文中进一步探讨了直觉式交互设计的成功与失败案例,为设

数字逻辑综合题技巧大公开:第五版习题解答与策略指南

![数字逻辑](https://study.com/cimages/videopreview/dwubuyyreh.jpg) # 摘要 本文旨在回顾数字逻辑基础知识,并详细探讨综合题的解题策略。文章首先分析了理解题干信息的方法,包括题目要求的分析与题型的确定,随后阐述了数字逻辑基础理论的应用,如逻辑运算简化和时序电路分析,并利用图表和波形图辅助解题。第三章通过分类讨论典型题目,逐步分析了解题步骤,并提供了实战演练和案例分析。第四章着重介绍了提高解题效率的技巧和避免常见错误的策略。最后,第五章提供了核心习题的解析和解题参考,旨在帮助读者巩固学习成果并提供额外的习题资源。整体而言,本文为数字逻辑

Zkteco智慧云服务与备份ZKTime5.0:数据安全与连续性的保障

# 摘要 本文全面介绍了Zkteco智慧云服务的系统架构、数据安全机制、云备份解决方案、故障恢复策略以及未来发展趋势。首先,概述了Zkteco智慧云服务的概况和ZKTime5.0系统架构的主要特点,包括核心组件和服务、数据流向及处理机制。接着,深入分析了Zkteco智慧云服务的数据安全机制,重点介绍了加密技术和访问控制方法。进一步,本文探讨了Zkteco云备份解决方案,包括备份策略、数据冗余及云备份服务的实现与优化。第五章讨论了故障恢复与数据连续性保证的方法和策略。最后,展望了Zkteco智慧云服务的未来,提出了智能化、自动化的发展方向以及面临的挑战和应对策略。 # 关键字 智慧云服务;系统

Java安全策略高级优化技巧:local_policy.jar与US_export_policy.jar的性能与安全提升

![Java安全策略高级优化技巧:local_policy.jar与US_export_policy.jar的性能与安全提升](https://www.delftstack.com/img/Java/feature image - java keycode.png) # 摘要 Java安全模型是Java平台中确保应用程序安全运行的核心机制。本文对Java安全模型进行了全面概述,并深入探讨了安全策略文件的结构、作用以及配置过程。针对性能优化,本文提出了一系列优化技巧和策略文件编写建议,以减少不必要的权限声明,并提高性能。同时,本文还探讨了Java安全策略的安全加固方法,强调了对local_po

海康二次开发实战攻略:打造定制化监控解决方案

![海康二次开发实战攻略:打造定制化监控解决方案](https://n.sinaimg.cn/sinakd10116/673/w1080h393/20210910/9323-843af86083a26be7422b286f463bb019.jpg) # 摘要 海康监控系统作为领先的视频监控产品,其二次开发能力是定制化解决方案的关键。本文从海康监控系统的基本概述与二次开发的基础讲起,深入探讨了SDK与API的架构、组件、使用方法及其功能模块的实现原理。接着,文中详细介绍了二次开发实践,包括实时视频流的获取与处理、录像文件的管理与回放以及报警与事件的管理。此外,本文还探讨了如何通过高级功能定制实

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )