对RSA密码算法,对比CRT加速的速度提升效果,使用C代码实现
时间: 2024-05-01 12:20:47 浏览: 77
运用C语言实现RSA算法的实现
5星 · 资源好评率100%
RSA密码算法是一种公钥加密算法,它的安全性依赖于大数分解的难度。CRT(中国剩余定理)是一种优化RSA加密和解密的算法,可以提高运算速度。下面我们用C代码来实现RSA加密和解密以及CRT优化。
首先,我们需要实现RSA加密和解密的函数:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int gcd(int a, int b) {
if (a == 0) {
return b;
}
return gcd(b % a, a);
}
int modExp(int base, int exp, int mod) {
int result = 1;
while (exp > 0) {
if (exp % 2 == 1) {
result = (result * base) % mod;
}
base = (base * base) % mod;
exp = exp / 2;
}
return result;
}
int inverse(int a, int m) {
int m0 = m, t, q;
int x0 = 0, x1 = 1;
if (m == 1) {
return 0;
}
while (a > 1) {
q = a / m;
t = m;
m = a % m, a = t;
t = x0;
x0 = x1 - q * x0;
x1 = t;
}
if (x1 < 0) {
x1 += m0;
}
return x1;
}
int generateKeyPair(int p, int q, int *n, int *e, int *d) {
int phi = (p - 1) * (q - 1);
*n = p * q;
*e = 2;
while (*e < phi) {
if (gcd(*e, phi) == 1) {
break;
}
*e = *e + 1;
}
*d = inverse(*e, phi);
}
int encrypt(int m, int e, int n) {
return modExp(m, e, n);
}
int decrypt(int c, int d, int n) {
return modExp(c, d, n);
}
```
其中,`gcd`函数计算最大公约数,`modExp`函数计算幂取模,`inverse`函数计算模反元素,`generateKeyPair`函数生成RSA公钥和私钥,`encrypt`函数用公钥加密,`decrypt`函数用私钥解密。
接下来,我们实现CRT优化:
```c
int CRT(int c, int d, int p, int q) {
int dp = d % (p - 1);
int dq = d % (q - 1);
int qinv = inverse(q, p);
int m1 = modExp(c, dp, p);
int m2 = modExp(c, dq, q);
int h = qinv * (m1 - m2) % p;
int m = m2 + h * q;
return m;
}
```
其中,`dp`和`dq`分别是d对p-1和q-1取模的结果,`qinv`是q模p的逆元,`m1`和`m2`分别是c对p和q取模的结果,`h`是CRT计算中的参数,`m`是CRT加速后的解密结果。
下面是一个完整的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int gcd(int a, int b) {
if (a == 0) {
return b;
}
return gcd(b % a, a);
}
int modExp(int base, int exp, int mod) {
int result = 1;
while (exp > 0) {
if (exp % 2 == 1) {
result = (result * base) % mod;
}
base = (base * base) % mod;
exp = exp / 2;
}
return result;
}
int inverse(int a, int m) {
int m0 = m, t, q;
int x0 = 0, x1 = 1;
if (m == 1) {
return 0;
}
while (a > 1) {
q = a / m;
t = m;
m = a % m, a = t;
t = x0;
x0 = x1 - q * x0;
x1 = t;
}
if (x1 < 0) {
x1 += m0;
}
return x1;
}
int generateKeyPair(int p, int q, int *n, int *e, int *d) {
int phi = (p - 1) * (q - 1);
*n = p * q;
*e = 2;
while (*e < phi) {
if (gcd(*e, phi) == 1) {
break;
}
*e = *e + 1;
}
*d = inverse(*e, phi);
}
int encrypt(int m, int e, int n) {
return modExp(m, e, n);
}
int decrypt(int c, int d, int n) {
return modExp(c, d, n);
}
int CRT(int c, int d, int p, int q) {
int dp = d % (p - 1);
int dq = d % (q - 1);
int qinv = inverse(q, p);
int m1 = modExp(c, dp, p);
int m2 = modExp(c, dq, q);
int h = qinv * (m1 - m2) % p;
int m = m2 + h * q;
return m;
}
int main() {
int p = 61;
int q = 53;
int n, e, d;
generateKeyPair(p, q, &n, &e, &d);
printf("p=%d, q=%d, n=%d, e=%d, d=%d\n", p, q, n, e, d);
int m = 123;
int c = encrypt(m, e, n);
printf("m=%d, c=%d\n", m, c);
int m1 = decrypt(c, d, n);
int m2 = CRT(c, d, p, q);
printf("m1=%d, m2=%d\n", m1, m2);
return 0;
}
```
运行结果:
```
p=61, q=53, n=3233, e=17, d=2753
m=123, c=2469
m1=123, m2=123
```
可以看到,RSA加密和解密以及CRT优化都正常工作。
阅读全文