softmax梯度下降训练python代码

时间: 2023-05-31 09:20:19 浏览: 69
### 回答1: 请问您的问题是关于如何训练Python代码的softmax函数吗?如果是,可以参考以下示例代码: import numpy as np def softmax(x): exp_x = np.exp(x) return exp_x / np.sum(exp_x) # 示例 x = np.array([1.0, 2.0, 3.0]) y = softmax(x) print(y) 输出: [0.09003057 0.24472847 0.66524096] 在训练神经网络中,softmax函数通常用于将神经网络的输出转化为概率分布,方便进行分类等任务。 ### 回答2: softmax梯度下降训练python代码需要先了解一些基本知识。softmax是一个用于分类问题的函数,它将一个向量对应到一个概率分布上。softmax函数的计算公式为: $$softmax(x)_i = \frac{e^{x_i}}{\sum_{j=1}^K e^{x_j}}$$ 其中$x$是一个向量,$K$是向量的长度。softmax函数将每个元素的指数值除以向量中所有元素指数值的和,得到一个新的向量,使得所有元素之和为1。 softmax函数广泛用于分类问题的神经网络中,通常与交叉熵损失函数一起使用。交叉熵是一种用于衡量两个概率分布之间的相似度的度量,对于分类问题来说,交叉熵损失函数用于衡量模型输出的概率分布和真实标签之间的差异。 softmax梯度下降训练python代码的实现如下: 1. 初始化参数 ```python def initialize_parameters(n_features, n_classes): np.random.seed(1) W = np.random.randn(n_features, n_classes) * 0.01 b = np.zeros((1, n_classes)) return W, b ``` 2. 定义softmax函数 ```python def softmax(X): e_x = np.exp(X-X.max()) return e_x / e_x.sum(axis = 1, keepdims = True) ``` 3. 定义交叉熵损失函数 ```python def compute_cost(AL, Y): m = Y.shape[0] cost = -1/m * np.sum(Y * np.log(AL)) return cost ``` 4. 进行反向传播,计算梯度 ```python def propagate(X, Y, W, b): m = X.shape[0] # forward propagation Z = np.dot(X, W) + b A = softmax(Z) # backward propagation dZ = A - Y dW = 1/m * np.dot(X.T, dZ) db = np.sum(dZ, axis=0, keepdims=True) return dW, db ``` 5. 更新参数 ```python def update_parameters(W, b, dW, db, learning_rate): W = W - learning_rate * dW b = b - learning_rate * db return W, b ``` 6. 训练模型 ```python def train(X, Y, n_classes, num_iterations, learning_rate): n_features = X.shape[1] W, b = initialize_parameters(n_features, n_classes) for i in range(num_iterations): dW, db = propagate(X, Y, W, b) W, b = update_parameters(W, b, dW, db, learning_rate) if i % 100 == 0: cost = compute_cost(softmax(np.dot(X, W) + b), Y) print(f"Cost after iteration {i}: {cost}") return W, b ``` 以上是softmax梯度下降训练python代码的基本实现。需要注意的是,对于多类别分类问题,通常采用one-hot编码将每个类别的标签转化成一个向量,每个向量都有一个1和其他元素为0,表示该样本属于哪个类别。在实现softmax函数和交叉熵损失函数时,需要使用one-hot编码后的标签。 ### 回答3: softmax梯度下降是一种常见的神经网络训练算法,它主要用于多分类问题。在本文中,我们将介绍如何使用Python实现softmax梯度下降训练算法,并解释代码的每一步。 首先,我们需要定义一个损失函数,用于度量预测结果和真实标签之间的差异。在分类问题中,通常使用交叉熵损失函数。 接下来,我们需要定义softmax函数,用于将原始输出转换为概率分布。softmax函数的定义如下: $$ softmax(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}} \quad for \ i = 1,\ldots,k $$ 其中,$\mathbf{z}$表示网络输出的原始结果,$k$表示分类问题中的类别数。 然后,我们可以定义模型的输出。假设我们有一个包含$n$个样本的数据集,每个样本有$d$个特征和$k$个类别。因此,我们的模型输出应该是一个$n \times k$的矩阵。 $$ \mathbf{Z} = \mathbf{X}\mathbf{W} + \mathbf{b} $$ 其中,$\mathbf{X}$是$n \times d$的输入矩阵,$\mathbf{W}$是$d \times k$的权重矩阵,$\mathbf{b}$是$k$维偏置向量。 然后,我们可以使用softmax函数将$\mathbf{Z}$转换为概率矩阵。 $$ \mathbf{\hat{Y}} = softmax(\mathbf{Z}) $$ 接下来,我们可以计算交叉熵损失函数。 $$ L = - \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^k y_{ij} \log{\hat{y}_{ij}} $$ 其中,$y_{ij}$表示第$i$个样本的真实标签。 最后,我们使用梯度下降算法更新权重和偏置。对于每个权重矩阵元素$w_{ij}$和每个偏置项$b_i$,我们需要按以下方式更新: $$ w_{ij} = w_{ij} - \alpha \frac{\partial L}{\partial w_{ij}} $$ $$ b_i = b_i - \alpha \frac{\partial L}{\partial b_i} $$ 其中,$\alpha$是学习率。 下面是使用Python实现softmax梯度下降训练算法的代码: ``` import numpy as np def softmax(z): exp_z = np.exp(z) return exp_z / exp_z.sum(axis=1, keepdims=True) def cross_entropy_loss(Y, Y_hat): return -np.mean(np.sum(Y * np.log(Y_hat), axis=1)) def softmax_grad(X, Y, Y_hat): n, k = Y.shape d = X.shape[1] grad_w = np.zeros((d, k)) grad_b = np.zeros((k)) for i in range(n): x = X[i].reshape(1, -1) y = Y[i].reshape(1, -1) y_hat = Y_hat[i].reshape(1, -1) delta = y_hat - y grad_w += x.T.dot(delta) grad_b += delta[0] return grad_w / n, grad_b / n def softmax_sgd(X, Y, learning_rate, num_epochs): n, d = X.shape k = Y.shape[1] W = np.zeros((d, k)) b = np.zeros((k)) for epoch in range(num_epochs): Z = X.dot(W) + b Y_hat = softmax(Z) loss = cross_entropy_loss(Y, Y_hat) grad_w, grad_b = softmax_grad(X, Y, Y_hat) W -= learning_rate * grad_w b -= learning_rate * grad_b print('Epoch {} loss: {}'.format(epoch+1, loss)) return W, b ``` 代码中的softmax函数、交叉熵损失函数和softmax梯度函数实现起来比较简单。softmax_sgd函数实现了softmax梯度下降算法,该函数接受输入矩阵X、真实标签矩阵Y、学习率和迭代次数作为输入,返回最终权重矩阵W和偏置向量b。 我们可以将该代码与数据集一起使用来训练一个softmax回归模型。

相关推荐

最新推荐

recommend-type

基于GEC6818五子棋游戏GEC6818_Gomoku.zip

五子棋游戏想必大家都非常熟悉,游戏规则十分简单。游戏开始后,玩家在游戏设置中选择人机对战,则系统执黑棋,玩家自己执白棋。双方轮流下一棋,先将横、竖或斜线的5个或5个以上同色棋子连成不间断的一排者为胜。 【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【技术】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

python中从Excel中取的列没有了0

可能是因为Excel中的列被格式化为数字,而数字前导的0被省略了。可以在Excel中将列的格式更改为文本,这样就会保留数字前导的0。另外,在Python中读取Excel时,可以将列的数据类型指定为字符串,这样就可以保留数字前导的0。例如: ```python import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx', dtype={'列名': str}) # 输出列数据 print(df['列名']) ``` 其中,`dtype={'列名': str}`表示将列名为“列名”的列的数据类型指定为字符串。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。