有一个天平给出一个物体的重量为m 给出n个砝码 每个法码不重复 求出最少数量的砝码组合 用分置法写代码
时间: 2024-12-15 14:19:19 浏览: 8
在使用分置法解决这个问题时,我们需要遍历每个砝码,并尝试将其加到天平的一边,直到达到或超过目标重量m。如果当前砝码不足以直接平衡,我们会考虑将剩余的砝码分成两部分,一部分添加到一边,另一部分减去(因为砝码是正数)。这个过程可以用递归的方式完成。
以下是使用Python编写的一个简单示例:
```python
def min_weights(m, weights, n, target=0):
if m == target:
return []
# 尝试所有砝码
for i in range(n):
# 如果可以覆盖,返回当前砝码加上剩余目标的解决方案
if weights[i] <= m:
sub_solution = min_weights(m - weights[i], weights, n, target)
if sub_solution:
return [weights[i]] + sub_solution
# 如果砝码大于剩余目标,尝试分割剩余目标
elif weights[i] > m and target < weights[i]:
sub_solution_left = min_weights(target, weights, n, m)
sub_solution_right = min_weights(weights[i] - m, weights, n, target - m)
if sub_solution_left and sub_solution_right:
return [weights[i]] + sub_solution_left + sub_solution_right
# 示例:给定m=4, n=3, weights=[1, 2, 3]
weights = [1, 2, 3]
min_weighs_result = min_weights(m, weights, len(weights))
print("最少需要的砝码组合:", min_weighs_result)
阅读全文