java多项式相乘fft
时间: 2023-10-14 10:06:22 浏览: 109
FFT(快速傅里叶变换)是一种高效的算法,可用于多项式乘法。以下是Java中实现多项式相乘的FFT算法的代码示例:
```java
import java.util.Arrays;
public class FFT {
private Complex[] omega;
public Complex[] fft(Complex[] A) {
int n = A.length;
if (n == 1)
return new Complex[] { A[0] };
Complex[] A0 = new Complex[n / 2];
Complex[] A1 = new Complex[n / 2];
for (int i = 0; i < n / 2; i++) {
A0[i] = A[2 * i];
A1[i] = A[2 * i + 1];
}
Complex[] y0 = fft(A0);
Complex[] y1 = fft(A1);
Complex[] y = new Complex[n];
for (int k = 0; k < n / 2; k++) {
Complex w = omega[n][k];
y[k] = y0[k].plus(w.times(y1[k]));
y[k + n / 2] = y0[k].minus(w.times(y1[k]));
}
return y;
}
public Complex[] inverseFFT(Complex[] y) {
int n = y.length;
Complex[] yInv = new Complex[n];
for (int i = 0; i < n; i++) {
yInv[i] = y[i].conjugate();
}
Complex[] aInv = fft(yInv);
for (int i = 0; i < n; i++) {
aInv[i] = aInv[i].conjugate().times(1.0 / n);
}
return aInv;
}
public void initOmega(int n) {
omega = new Complex[n + 1];
for (int i = 0; i <= n; i++) {
double angle = 2 * Math.PI * i / n;
omega[i] = new Complex(Math.cos(angle), Math.sin(angle));
}
}
public Complex[] multiply(Complex[] a, Complex[] b) {
int n = Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 1;
initOmega(n);
Complex[] A = Arrays.copyOf(a, n);
Complex[] B = Arrays.copyOf(b, n);
Complex[] y1 = fft(A);
Complex[] y2 = fft(B);
Complex[] y = new Complex[n];
for (int k = 0; k < n; k++) {
y[k] = y1[k].times(y2[k]);
}
Complex[] c = inverseFFT(y);
return c;
}
public static void main(String[] args) {
FFT fft = new FFT();
Complex[] a = new Complex[] { new Complex(1), new Complex(2), new Complex(3) };
Complex[] b = new Complex[] { new Complex(4), new Complex(5), new Complex(6) };
Complex[] c = fft.multiply(a, b);
for (int i = 0; i < c.length; i++) {
System.out.print(c[i] + " ");
}
}
}
class Complex {
public double re;
public double im;
public Complex(double re, double im) {
this.re = re;
this.im = im;
}
public Complex plus(Complex other) {
return new Complex(re + other.re, im + other.im);
}
public Complex minus(Complex other) {
return new Complex(re - other.re, im - other.im);
}
public Complex times(Complex other) {
return new Complex(re * other.re - im * other.im, re * other.im + im * other.re);
}
public Complex conjugate() {
return new Complex(re, -im);
}
public String toString() {
return String.format("(%f,%f)", re, im);
}
}
```
该代码使用Complex类来表示复数,实现了FFT算法和多项式相乘的操作。在主方法中,可以看到如何使用该类来计算多项式a和b的乘积。
阅读全文