某二叉树中序序列为ABCDEFG,后序序列为BDCA,FG,E则前序序列是:
时间: 2024-03-01 13:49:24 浏览: 190
根据中序序列和后序序列可以确定该二叉树的形状和结构,进而推导出前序序列。具体做法如下:
1. 后序序列的最后一个元素是根节点,即 E。
2. 在中序序列中找到根节点 E,它将中序序列分成了左右两个子序列:ABC 和 FGH。
3. 根据左右子序列的长度,将后序序列分成了两个子序列:BDC 和 FG。
4. 对于左子树,它的中序序列为 ABC,后序序列为 BDC,可以递归地构建左子树,得到前序序列为:B D C A。
5. 对于右子树,它的中序序列为 FGH,后序序列为 FG,可以递归地构建右子树,得到前序序列为:F G H。
因此,该二叉树的前序序列为:E B D C A F G H。
相关问题
已知某二叉树的中序序列和后序序列分别是: 中序: B F D G A C H E: 后序: F G D B H EC A
这个问题我可以帮你解答。根据二叉树的中序遍历和后序遍历,可以推出该二叉树的前序遍历序列。具体的推导过程可以通过构建二叉树的方法来实现,具体如下:
1. 后序遍历序列的最后一个元素为二叉树的根节点。
2. 在中序遍历序列中找到根节点的位置,可以将中序遍历序列划分为左子树和右子树两部分。
3. 对应后序遍历序列中,根节点前面的元素为右子树的节点,根节点后面的元素为左子树的节点。
4. 递归地处理左子树和右子树,直到遍历完整个二叉树。
根据上述方法,可以推出该二叉树的前序遍历序列为:ABDFGHCE。
已知一个二叉树的中序遍历序列和后序遍历序列,求这棵树的前序遍历序列\n【问题描述】\n 已知一个二叉树的中序遍历序列和后序遍历序列,求这棵树的前序遍历序列。\n\n【输入形式】\n 一个树的中序遍历序列 该树后
### 回答1:
序遍历序列,每个序列中的元素用空格隔开。\n\n【输出形式】\n 该树的前序遍历序列,每个元素用空格隔开。\n\n【样例输入】\n 2 1 3\n 2 3 1\n\n【样例输出】\n 1 2 3\n\n【样例说明】\n 根据中序遍历序列和后序遍历序列可以确定该树的结构,进而求出前序遍历序列为1 2 3。
### 回答2:
根据二叉树的性质,前序遍历序列的第一个节点是根节点,而后序遍历序列的最后一个节点也是根节点。因此,我们可以根据后序遍历序列的最后一个节点,将中序遍历序列分成左子树和右子树两部分。
接着,我们可以利用递归的方式,对左子树和右子树分别重复上述过程,分别得到左子树的前序遍历序列和右子树的前序遍历序列。最后将根节点与左右子树的前序遍历序列合并成为完整的前序遍历序列。
具体的方法如下:
1. 根据后序遍历,确定根节点
后序遍历的最后一个元素即为根节点,记为 root。
2. 根据中序遍历,确定左右子树的中序遍历序列
在中序遍历序列中,找到根节点root所在的位置index,那么中序遍历序列中,index左侧的所有元素即为根节点root的左子树的中序遍历序列,index右侧的所有元素即为根节点root的右子树的中序遍历序列。
3. 根据左右子树的中序遍历序列,确定左右子树的后序遍历序列
在后序遍历序列中,根节点root左侧的所有元素即为根节点root的左子树的后序遍历序列,根节点root右侧的所有元素即为根节点root的右子树的后序遍历序列。
4. 递归求解左右子树的前序遍历序列
对左子树和右子树进行递归,得到左子树的前序遍历序列和右子树的前序遍历序列。
5. 合并左右子树的前序遍历序列
左子树的前序遍历序列 + 右子树的前序遍历序列 + 根节点root,即为整棵树的前序遍历序列。
通过以上步骤,我们就可以从给出的中序遍历序列和后序遍历序列中,求出对应二叉树的前序遍历序列了。
### 回答3:
序遍历序列,中序遍历序列和后序遍历序列中的每个节点的值都是不同的,同时节点的值都为非负整数,且不超过1000。中序遍历序列和后序遍历序列的长度均不超过1000。\n\n【输出形式】\n 输出这棵树的前序遍历序列。\n\n【解题思路】\n 在树中,根节点的左子树和右子树都是二叉树,并且根节点的值在中序遍历序列中将这个序列分成了左子树和右子树两个子序列,同时在后序遍历序列中也有这样的特性,即最后一个节点为根节点。因此,对于给定的中序遍历序列和后序遍历序列,可以先通过后序遍历序列找到根节点,再通过中序遍历序列分割出左子树和右子树的中序遍历序列,递归处理左子树和右子树,最后将它们的前序遍历序列和根节点的值合并即可得到整棵树的前序遍历序列。\n\n【参考代码】\n```\n#include<cstdio>
int inorder[1005],postorder[1005];//记录中序遍历序列和后序遍历序列
void preorder(int nin,int npost,int n){//递归处理,输出前序遍历序列
if(nin>n||npost>n) return;
int i=0;//i用于在中序遍历序列中找到根节点
while(inorder[nin+i]!=postorder[npost-1]) i++;
printf("%d ",postorder[npost-1]);
preorder(nin,npost-i-1,i);//递归处理左子树
preorder(nin+i+1,npost-i-1+i,n-i-1);//递归处理右子树
}
int main(){
int n;
scanf("%d",&n);
for(int i=0;i<n;i++) scanf("%d",&inorder[i]);
for(int i=0;i<n;i++) scanf("%d",&postorder[i]);
preorder(0,0,n);
return 0;
}```
阅读全文