def __init__(self, feature_num=80, training=True): self.feature_num = feature_num self.training = training # 输入文本信息 self.character_id = layers.Input(shape=[None], name='character_id') self.character_posid = layers.Input(shape=[None, 256], name='character_posid', dtype=tf.float32) self.character_mask = layers.Input(shape=[None], name='character_mask') # 输出音频特征信息 self.audio_feature = layers.Input(shape=[None, feature_num], name='audio_feature', dtype=tf.int64) self.audio_posid = layers.Input(shape=[None, 256], name='label_position', dtype=tf.float32) self.audio_self_mask = layers.Input(shape=[None, None], name='label_self_masks') self.decoder_encoder_input = layers.Input(shape=[None, 256], name='decoder_encoder_input') self.text_model()
时间: 2023-06-13 15:08:33 浏览: 83
这段代码看起来是一个类的初始化函数。其中,类的属性包括feature_num和training,分别表示音频特征的数量和是否为训练模式。接下来是一些输入和输出的定义,包括字符id、位置id、掩码等信息的输入,以及音频特征、位置id、自掩码和解码器编码器输入的输出。最后,调用了text_model()方法,应该是用于定义模型的。
相关问题
class LWLActor(BaseActor): """Actor for training the LWL network.""" def __init__(self, net, objective, loss_weight=None, num_refinement_iter=3, disable_backbone_bn=False, disable_all_bn=False): """ args: net - The network model to train objective - Loss functions loss_weight - Weights for each training loss num_refinement_iter - Number of update iterations N^{train}_{update} used to update the target model in each frame disable_backbone_bn - If True, all batch norm layers in the backbone feature extractor are disabled, i.e. set to eval mode. disable_all_bn - If True, all the batch norm layers in network are disabled, i.e. set to eval mode. """ super().__init__(net, objective) if loss_weight is None: loss_weight = {'segm': 1.0} self.loss_weight = loss_weight self.num_refinement_iter = num_refinement_iter self.disable_backbone_bn = disable_backbone_bn self.disable_all_bn = disable_all_bn def train(self, mode=True): """ Set whether the network is in train mode. args: mode (True) - Bool specifying whether in training mode. """ self.net.train(mode)
这是一个用于训练LWL网络的Actor类。在初始化时,它接收了一些参数,包括net(模型)、objective(目标函数)、loss_weight(损失权重)、num_refinement_iter(每个帧中用于更新目标模型的更新迭代次数)、disable_backbone_bn(如果为True,则禁用骨干特征提取器中的所有批归一化层,即将其设置为eval模式)和disable_all_bn(如果为True,则禁用网络中的所有批归一化层,即将其设置为eval模式)。
在该类中,train方法用于设置网络是否处于训练模式。默认情况下,该方法将网络设置为训练模式。如果将mode参数设置为False,则可以将网络设置为评估模式。
详细解释代码import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader # 图像预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 加载数据集 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=128, shuffle=False, num_workers=0) # 构建模型 class RNNModel(nn.Module): def init(self): super(RNNModel, self).init() self.rnn = nn.RNN(input_size=3072, hidden_size=512, num_layers=2, batch_first=True) self.fc = nn.Linear(512, 10) def forward(self, x): # 将输入数据reshape成(batch_size, seq_len, feature_dim) x = x.view(-1, 3072, 1).transpose(1, 2) x, _ = self.rnn(x) x = x[:, -1, :] x = self.fc(x) return x net = RNNModel() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.001) # 训练模型 loss_list = [] acc_list = [] for epoch in range(30): # 多批次循环 running_loss = 0.0 correct = 0 total = 0 for i, data in enumerate(trainloader, 0): # 获取输入 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 前向传播,反向传播,优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 打印统计信息 running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total acc_list.append(acc) loss_list.append(running_loss / len(trainloader)) print('[%d] loss: %.3f, acc: %.3f' % (epoch + 1, running_loss / len(trainloader), acc)) print('Finished Training') torch.save(net.state_dict(), 'rnn1.pt') # 绘制loss变化曲线和准确率变化曲线 import matplotlib.pyplot as plt fig, axs = plt.subplots(2, 1, figsize=(10, 10)) axs[0].plot(loss_list) axs[0].set_title("Training Loss") axs[0].set_xlabel("Epoch") axs[0].set_ylabel("Loss") axs[1].plot(acc_list) axs[1].set_title("Training Accuracy") axs[1].set_xlabel("Epoch") axs[1].set_ylabel("Accuracy") plt.show() # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
这段代码是一个基于RNN(循环神经网络)的模型来对CIFAR-10数据集进行分类。以下是详细的解释:
1. 导入需要的库:
```
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
```
2. 图像预处理:
```
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
```
这里使用了transforms.Compose()函数来将多个预处理操作组合在一起。首先将图像转换成张量,然后进行归一化,使其值在[-1,1]之间。
3. 加载数据集:
```
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = DataLoader(testset, batch_size=128, shuffle=False, num_workers=0)
```
这里使用了torchvision.datasets.CIFAR10()函数来加载CIFAR-10数据集,train=True表示加载训练集,train=False表示加载测试集。通过DataLoader()函数将数据集转换成一个可迭代的对象,可以方便地进行批处理、数据增强等操作。
4. 构建模型:
```
class RNNModel(nn.Module):
def __init__(self):
super(RNNModel, self).__init__()
self.rnn = nn.RNN(input_size=3072, hidden_size=512, num_layers=2, batch_first=True)
self.fc = nn.Linear(512, 10)
def forward(self, x):
x = x.view(-1, 3072, 1).transpose(1, 2)
x, _ = self.rnn(x)
x = x[:, -1, :]
x = self.fc(x)
return x
net = RNNModel()
```
这里定义了一个RNNModel类,它继承了nn.Module类。在__init__()方法中,我们定义了一个RNN层和一个全连接层来构建模型。在forward()方法中,我们首先将输入数据reshape成(batch_size, seq_len, feature_dim)的形状,然后经过RNN层得到输出,最后经过全连接层得到最终的分类结果。
5. 定义损失函数和优化器:
```
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
```
这里使用交叉熵损失函数和Adam优化器来训练模型。
6. 训练模型:
```
loss_list = []
acc_list = []
for epoch in range(30):
running_loss = 0.0
correct = 0
total =
阅读全文