newton插值法matlab
时间: 2023-08-24 21:09:56 浏览: 132
在MATLAB中,可以使用牛顿插值法来进行插值计算。牛顿插值法是一种基于差商的方法,用于在给定数据点的情况下估计插值函数的值。
下面是一个使用牛顿插值法进行插值计算的示例代码:
```matlab
% 输入数据点
x = [1 2 3 4]; % x坐标
y = [3 5 4 6]; % y坐标
% 计算差商
n = length(x);
D = zeros(n, n); % 用于存储差商的矩阵
D(:, 1) = y'; % 第一列为y的值
for j = 2:n
for i = j:n
D(i, j) = (D(i, j-1) - D(i-1, j-1)) / (x(i) - x(i-j+1));
end
end
% 计算插值多项式的系数
coefficients = diag(D);
% 定义插值多项式的符号表达式
syms t;
polynomial = coefficients(1);
for i = 2:n
term = coefficients(i);
for j = 1:i-1
term = term * (t - x(j));
end
polynomial = polynomial + term;
end
% 绘制原始数据点和插值多项式
plot(x, y, 'o', 'MarkerFaceColor', 'b');
hold on;
fplot(polynomial, [min(x), max(x)], 'r');
legend('Data Points', 'Interpolating Polynomial');
xlabel('x');
ylabel('y');
```
你可以根据自己的需求修改输入的数据点x和y,然后运行这段代码来进行牛顿插值计算,并绘制插值多项式和原始数据点的图形。
阅读全文
相关推荐


















