input_1 = keras.Input(shape=(1292, 1)) x = Conv1D(filters=4, kernel_size=11, strides=9, padding='same', activation='relu')(input_1) x = Conv1D(filters=8, kernel_size=9, strides=4, padding='same', activation='relu')(x) x = Conv1D(filters=16, kernel_size=7, strides=4, padding='same', activation='relu')(x) output_1 = keras.layers.Flatten()(x) # TensorSpec(shape=(None, 160) model1 = keras.Model(inputs=input_1, outputs=output_1, name="fs_feature") model1.summary() #怎么改让输出为160维
时间: 2023-09-19 15:08:11 浏览: 80
使用keras时input_shape的维度表示问题说明
在上述代码中,最后一层是通过`Flatten()`将多维的输出展平成了一维向量,因此输出的维度为`(None, 160)`,其中`None`表示可以接受任意数量的样本。如果希望输出的维度仍为`(None, 1, 160)`,可以在最后一层的参数中添加`reshape`操作,代码如下所示:
```
input_1 = keras.Input(shape=(1292, 1))
x = Conv1D(filters=4, kernel_size=11, strides=9, padding='same', activation='relu')(input_1)
x = Conv1D(filters=8, kernel_size=9, strides=4, padding='same', activation='relu')(x)
x = Conv1D(filters=16, kernel_size=7, strides=4, padding='same', activation='relu')(x)
x = keras.layers.Flatten()(x)
output_1 = keras.layers.Reshape((1, 160))(x)
model1 = keras.Model(inputs=input_1, outputs=output_1, name="fs_feature")
model1.summary()
```
在上述代码中,`Reshape((1, 160))`将一维向量重新变为了三维张量,其中第一维为样本数量,第二维为1,第三维为160。
阅读全文