#include <iostream> using namespace std; int n, m; int gcd(int a, int b) { if(!b) return a; return gcd(b, a % b); } struct Frac { int fz, fm; double val; void simplify() { fz /= gcd(fz, fm); fm /= gcd(fz, fm); val = (double)fz / (double)fm; } void init(int fm_, int fz_) { fm = fm_; fz = fz_; simplify(); } Frac operator +(Frac a) { int gfm = a.fm * fm; int gfz = a.fz * fm + fz * a.fm; Frac ans; ans.init(gfm, gfz); ans.simplify(); return ans; } Frac operator -(Frac a) { int gfm = a.fm * fm; int gfz = fz * a.fm - a.fz * fm; Frac ans; ans.init(gfm, gfz); ans.simplify(); return ans; } void print() { cout << fz << "/" << fm << endl; } }; int Solve(Frac csum, int cnum, int cnt) { if(cnt == n) { Frac temp; temp.init(1, 1); Frac d = (temp - csum); if(d.fz == 1) { return 1; } return 0; } Frac t; for(int i = cnum; i <= m; i++) { t.init(i, 1); Solve(csum + t, i, cnt + 1); } } int main() { cin >> n >> m; Frac zero; zero.init(1, 0); int ans = Solve(zero, 2, 1); cout << ans << endl; return 0; }

时间: 2024-04-15 07:24:49 浏览: 17
这是一个求解分数和为1的问题,给定两个整数n和m,需要找出n个分数,使得这n个分数的和为1,并且分母不超过m。 程序中定义了一个结构体`Frac`表示分数,包含了分子fz、分母fm和值val。其中,`simplify`函数用于化简分数,`init`函数用于初始化分数,`operator+`和`operator-`函数用于实现分数的加法和减法,`print`函数用于打印分数。 主函数中,先读入n和m,然后定义一个初始值为0的分数zero,接着调用`Solve`函数求解。`Solve`函数是一个递归函数,它通过枚举分母从cnum到m的所有可能取值,不断累加分数csum,并递归调用自身求解下一轮的分数。当累加的次数cnt等于n时,判断最后一个分数与1的差是否为1,如果是则返回1,否则返回0。 最后,将初始值为zero的分数和2、1传入`Solve`函数,并将结果打印出来。 请问还有什么需要帮助的吗?
相关问题

对代码进行详细讲解#include <iostream> #include <vector> using namespace std; // 求最大公约数 int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } // 获取所有分母小于等于 n 的最简分数 vector<pai

r<int, int>> getSimpleFractions(int n) { vector<pair<int, int>> res; // 存储最简分数的向量 for (int i = 2; i <= n; i++) { // 分母从2开始遍历到n for (int j = 1; j < i; j++) { // 分子从1开始遍历到i-1 if (gcd(i, j) == 1) { // 如果分子分母互质,即最大公约数为1,则为最简分数 res.push_back(make_pair(j, i)); // 将最简分数存入向量中 } } } return res; // 返回存储最简分数的向量 } 这段代码主要实现了以下功能: 1.定义了一个函数 `int gcd(int a, int b)`,用于求两个数的最大公约数,其中采用了递归的方式实现。 2.定义了一个函数 `vector<pair<int, int>> getSimpleFractions(int n)`,用于获取所有分母小于等于n的最简分数,其中采用了嵌套循环的方式实现。 3.在主函数中,调用了 `getSimpleFractions(int n)` 函数,获取了所有分母小于等于10的最简分数,并将其输出。 具体实现过程如下: 1.在 `getSimpleFractions(int n)` 函数中,首先定义了一个向量 `res` 用于存储最简分数。 2.然后,从分母2开始遍历到n,其中 `i` 表示分母。 3.在 `i` 的循环内部,从分子1开始遍历到`i-1`,其中 `j` 表示分子。 4.接着,判断分子分母是否互质,即最大公约数是否为1,如果是,则将最简分数存入向量 `res` 中。 5.最后,返回存储最简分数的向量 `res`。 值得注意的是,这段代码使用了 STL 中的向量和 pair 容器,其中 `pair<int, int>` 表示一个最简分数,例如 `make_pair(j, i)` 表示分子为 `j`,分母为 `i` 的最简分数。 另外,代码中使用了递归的方式实现最大公约数的计算,这是一种比较简单易懂的实现方式,但可能会在计算大的数时出现栈溢出的问题,可以采用更高效的算法实现。

将代码#include <iostream> using namespace std; int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } int main() { int numerator, denominator; cin >> numerator >> denominator; int div = gcd(numerator, denominator); cout << numerator / div << " " << denominator / div << endl; return 0; }改成C语言

下面是将该代码改写成C语言的版本: ```c #include <stdio.h> int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } int main() { int numerator, denominator; scanf("%d %d", &numerator, &denominator); int div = gcd(numerator, denominator); printf("%d %d\n", numerator / div, denominator / div); return 0; } ``` 主要的修改包括: 1. 使用 `stdio.h` 替换 `iostream` 头文件; 2. 使用 `scanf` 替换 `cin` 读取输入; 3. 使用 `printf` 替换 `cout` 输出结果。

相关推荐

#include <iostream> #include <vector> #include <cmath> #include <string> using namespace std; // 计算最大公约数 int gcd(int a, int b) { while (b != 0) { int temp = b; b = a % b; a = temp; } return a; } // 获取有理分式的部分分式 vector<string> getPartialFractions(int P[], int Q[], int n) { vector<string> partialFractions; // 计算主次部分 int quotient = P[0] / Q[0]; int remainder = P[0] % Q[0]; if (quotient != 0) { partialFractions.push_back(to_string(quotient)); } if (remainder != 0) { int divisor = gcd(remainder, Q[0]); int numerator = remainder / divisor; int denominator = Q[0] / divisor; partialFractions.push_back("(" + to_string(numerator) + "/" + to_string(denominator) + ")"); } // 计算余项部分 for (int i = 1; i < n; i++) { quotient = P[i] / Q[i]; remainder = P[i] % Q[i]; if (quotient != 0) { partialFractions.push_back(to_string(quotient)); } if (remainder != 0) { int divisor = gcd(remainder, Q[i]); int numerator = remainder / divisor; int denominator = Q[i] / divisor; partialFractions.push_back("(" + to_string(numerator) + "/" + to_string(denominator) + ")/(x-" + to_string(-1 * i) + ")"); } } return partialFractions; } int main() { int P[] = { 0, 0, 0, 1, 0 }; // 分子系数数组 int Q[] = { 1, 2, -3, 0, 0 }; // 分母系数数组 int n = sizeof(P) / sizeof(P[0]); // 系数数组的长度 vector<string> partialFractions = getPartialFractions(P, Q, n); for (int i = 0; i < partialFractions.size(); i++) { cout << partialFractions[i]; if (i != partialFractions.size() - 1) { cout << "+"; } } return 0; } 注释

最新推荐

recommend-type

2848.png

2848
recommend-type

基于java的进销存或库存管理系统源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

确保MATLAB回归分析模型的可靠性:诊断与评估的全面指南

![确保MATLAB回归分析模型的可靠性:诊断与评估的全面指南](https://img-blog.csdnimg.cn/img_convert/4b823f2c5b14c1129df0b0031a02ba9b.png) # 1. 回归分析模型的基础** **1.1 回归分析的基本原理** 回归分析是一种统计建模技术,用于确定一个或多个自变量与一个因变量之间的关系。其基本原理是拟合一条曲线或超平面,以最小化因变量与自变量之间的误差平方和。 **1.2 线性回归和非线性回归** 线性回归是一种回归分析模型,其中因变量与自变量之间的关系是线性的。非线性回归模型则用于拟合因变量与自变量之间非
recommend-type

引发C++软件异常的常见原因

1. 内存错误:内存溢出、野指针、内存泄漏等; 2. 数组越界:程序访问了超出数组边界的元素; 3. 逻辑错误:程序设计错误或算法错误; 4. 文件读写错误:文件不存在或无法打开、读写权限不足等; 5. 系统调用错误:系统调用返回异常或调用参数错误; 6. 硬件故障:例如硬盘损坏、内存损坏等; 7. 网络异常:网络连接中断、网络传输中断、网络超时等; 8. 程序异常终止:例如由于未知原因导致程序崩溃等。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

打造高性能MATLAB回归分析模型:特征工程的艺术

![matlab回归分析](http://blog.fens.me/wp-content/uploads/2016/07/m01.png) # 1. 回归分析模型概述 回归分析是一种预测建模技术,用于建立自变量和因变量之间的关系。在回归模型中,因变量是我们要预测的目标变量,而自变量是影响因变量的输入变量。 回归分析模型的目的是找到一个数学方程,该方程可以准确地预测因变量的值,给定自变量的值。该方程通常表示为: ``` y = b0 + b1x1 + b2x2 + ... + bnxn ``` 其中: * y 是因变量 * x1、x2、...、xn 是自变量 * b0、b1、...、b
recommend-type

爬取虎牙直播的英雄联盟板块热度并可视化显示

抱歉,作为AI语言模型,我无法执行网络爬虫操作。但我可以提供一个大体的思路: 1. 使用Python的requests库向虎牙直播英雄联盟板块的页面发送请求,获取页面内容。 2. 使用BeautifulSoup库解析页面内容,提取出热度相关的信息。 3. 使用matplotlib等可视化库将热度数据进行可视化展示。 需要注意的是,网站的爬取需要遵守相关法律法规和网站的使用协议,否则可能会引起法律问题。