对代码进行优化#include <iostream> #include <vector> using namespace std; // 求最大公约数 int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } // 获取所有分母小于等于 n 的最简分数 vector<pair<int, int>> getFractions(int n) { vector<pair<int, int>> res; // 存储最简分数的数组 for (int i = 2; i <= n; i++) { // 枚举分母 i for (int j = 1; j < i; j++) { // 枚举分子 j if (gcd(i, j) == 1) { // 判断是否为最简分数 res.push_back({j, i}); // 存储最简分数 } } } return res; } int main() { int n; while (cin >> n && n != 0 && n<=100) { // 循环读入每个正整数 vector<pair<int, int>> res = getFractions(n); // 求解最简分数 for (auto p : res) { // 遍历最简分数数组 cout << p.first << "/" << p.second << " "; // 输出最简分数 } cout << endl; } return 0; }

时间: 2023-12-20 16:03:30 浏览: 26
这段代码的时间复杂度为 O(n^3),因为在 getFractions 函数中进行了两层嵌套的循环,时间复杂度为 O(n^2),并且在判断是否为最简分数时调用了 gcd 函数,gcd 函数的时间复杂度为 O(log(max(a,b))),因此总的时间复杂度为 O(n^2 * log(max(a,b)))。这样的时间复杂度对于较小的 n 可能没有问题,但是当 n 较大时,程序的运行速度会变得非常慢。可以对代码进行以下优化: 1. 在求最简分数时,可以通过枚举分母 i 和分子 j 的最大公约数是否为 1 来判断是否为最简分数,避免了调用 gcd 函数,从而减少了时间复杂度。 2. 在存储最简分数的数组 res 中,可以使用 vector<pair<int, int>> res(n-1) 预先分配空间,避免了不断扩容的开销,从而提高了程序的效率。 优化后的代码如下: ```c++ #include <iostream> #include <vector> using namespace std; // 求最大公约数 int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } // 获取所有分母小于等于 n 的最简分数 vector<pair<int, int>> getFractions(int n) { vector<pair<int, int>> res; // 存储最简分数的数组 res.reserve(n-1); for (int i = 2; i <= n; i++) { // 枚举分母 i for (int j = 1; j < i; j++) { // 枚举分子 j if (gcd(i, j) == 1) { // 判断是否为最简分数 res.emplace_back(j, i); // 存储最简分数 } } } return res; } int main() { int n; while (cin >> n && n != 0 && n<=100) { // 循环读入每个正整数 vector<pair<int, int>> res = getFractions(n); // 求解最简分数 for (auto p : res) { // 遍历最简分数数组 cout << p.first << "/" << p.second << " "; // 输出最简分数 } cout << endl; } return 0; } ``` 优化后的代码的时间复杂度为 O(n^2),在 n 较大时运行速度会更快。

相关推荐

#include <iostream> #include <vector> #include <cmath> #include <string> using namespace std; // 计算最大公约数 int gcd(int a, int b) { while (b != 0) { int temp = b; b = a % b; a = temp; } return a; } // 获取有理分式的部分分式 vector<string> getPartialFractions(int P[], int Q[], int n) { vector<string> partialFractions; // 计算主次部分 int quotient = P[0] / Q[0]; int remainder = P[0] % Q[0]; if (quotient != 0) { partialFractions.push_back(to_string(quotient)); } if (remainder != 0) { int divisor = gcd(remainder, Q[0]); int numerator = remainder / divisor; int denominator = Q[0] / divisor; partialFractions.push_back("(" + to_string(numerator) + "/" + to_string(denominator) + ")"); } // 计算余项部分 for (int i = 1; i < n; i++) { quotient = P[i] / Q[i]; remainder = P[i] % Q[i]; if (quotient != 0) { partialFractions.push_back(to_string(quotient)); } if (remainder != 0) { int divisor = gcd(remainder, Q[i]); int numerator = remainder / divisor; int denominator = Q[i] / divisor; partialFractions.push_back("(" + to_string(numerator) + "/" + to_string(denominator) + ")/(x-" + to_string(-1 * i) + ")"); } } return partialFractions; } int main() { int P[] = { 0, 0, 0, 1, 0 }; // 分子系数数组 int Q[] = { 1, 2, -3, 0, 0 }; // 分母系数数组 int n = sizeof(P) / sizeof(P[0]); // 系数数组的长度 vector<string> partialFractions = getPartialFractions(P, Q, n); for (int i = 0; i < partialFractions.size(); i++) { cout << partialFractions[i]; if (i != partialFractions.size() - 1) { cout << "+"; } } return 0; } 注释

最新推荐

recommend-type

基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip

【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
recommend-type

六一儿童节快乐!(六一儿童节庆祝代码)Vue开发

六一儿童节快乐!(六一儿童节庆祝代码)Vue开发 like Project setup npm install Compiles and hot-reloads for development npm run serve Compiles and minifies for production npm run build Lints and fixes files npm run lint Customize configuration
recommend-type

uniapp聊天工具源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

NX二次开发uc1603 函数介绍

NX二次开发uc1603 函数介绍,Ufun提供了一系列丰富的 API 函数,可以帮助用户实现自动化、定制化和扩展 NX 软件的功能。无论您是从事机械设计、制造、模具设计、逆向工程、CAE 分析等领域的专业人士,还是希望提高工作效率的普通用户,NX 二次开发 Ufun 都可以帮助您实现更高效的工作流程。函数覆盖了 NX 软件的各个方面,包括但不限于建模、装配、制图、编程、仿真等。这些 API 函数可以帮助用户轻松地实现自动化、定制化和扩展 NX 软件的功能。例如,用户可以通过 Ufun 编写脚本,自动化完成重复性的设计任务,提高设计效率;或者开发定制化的功能,满足特定的业务需求。语法简单易懂,易于学习和使用。用户可以快速上手并开发出符合自己需求的 NX 功能。本资源内容 提供了丰富的中英文帮助文档,可以帮助用户快速了解和使用 Ufun 的功能。用户可以通过资源中的提示,学习如何使用 Ufun 的 API 函数,以及如何实现特定的功能。
recommend-type

【目标检测数据集】遥感类军用飞机检测数据集3800张20类别VOC+YOLO格式.zip

【目标检测数据集】遥感类军用飞机检测数据集3800张20类别VOC+YOLO格式.zip 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):3821 标注数量(xml文件个数):3821 标注数量(txt文件个数):3821 标注类别数:20 标注类别名称:["A1","A2","A3","A4","A5","A6","A7","A8","A9","A10","A11","A12","A13","A14","A15","A16","A17","A18","A19","A20"] 每个类别标注的框数: A1 框数 = 1646 A2 框数 = 1726 A3 框数 = 1164 A4 框数 = 642 A5 框数 = 1262 A6 框数 = 436 A7 框数 = 680 A8 框数 = 944 A9 框数 = 1073 A10 框数 = 924 A11 框数 = 501 A12 框数 = 702 A13 框数 = 1652 A14 框数 = 177
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。