计算序列 1!+2!+3!+⋯ 的前N项之和。
时间: 2024-11-06 17:21:40 浏览: 14
x(n)=cos(0.5πn)+0.2sin(0.2πn),n=0,⋯9,求出x(n)的离散傅立叶变换,并画出其幅度谱
要计算序列 1! + 2! + 3! + ... + N! 的前 N 项之和,你可以创建一个循环,从 1 到 N 遍历每个数 i,然后计算它的阶乘 i! 并将其加到总和上。阶乘是一个数的所有小于及等于该数的正整数的积。下面是计算这个和的一个简单算法:
```cpp
#include <iostream>
using namespace std;
int factorial(int n) {
if (n == 0 || n == 1) {
return 1;
} else {
return n * factorial(n - 1);
}
}
int sumOfFactorials(int n) {
int total = 0;
for (int i = 1; i <= n; ++i) {
total += factorial(i);
}
return total;
}
int main() {
int N;
cout << "请输入你要计算的项数 N: ";
cin >> N;
cout << "1! + 2! + 3! + ... + " << N << "! 的和是: " << sumOfFactorials(N) << endl;
return 0;
}
```
在这个代码里,`factorial` 函数用于计算阶乘,而 `sumOfFactorials` 函数则是累加所有阶乘。
阅读全文