黄金分割法matlab 程序,要求在屏幕上输出每一步迭代的搜索区间、插入点和区间长度
时间: 2024-10-23 22:05:36 浏览: 56
黄金分割法(Golden Section Search),也称为二分查找的一种变体,是一种用于寻找函数极值的有效算法。在MATLAB中实现黄金分割法,可以按照以下步骤编写程序:
```Matlab
function goldenSectionSearch(f, a, b)
% 输入参数:
% f - 要优化的连续函数 handle
% a, b - 区间 [a, b] 的初始范围
% 定义黄金比例常数 phi (约等于 0.618033988749895)
phi = (sqrt(5) - 1) / 2;
% 初始化中间点 c 和精度 epsilon
c = a + phi * (b - a) / 10; % 设置收敛阈值
while abs(c-a) > epsilon
% 计算函数在a、c、b三个点的值
fa = f(a);
fc = f(c);
fb = f(b);
if fc < fa && fc < fb
% 插入点向左移动到c
b = c;
elseif fa < fc && fa < fb
% 插入点向右移动到a
a = c;
else
% 如果fc是最小值,那么搜索结束于c
c = a + phi * (b - a);
end
% 更新屏幕输出
fprintf('Step: %d, Search Interval: [%f, %f], Insertion Point: %f\n', ...
floor(log(abs(b-a))/log(phi)), a, b, c);
end
fprintf('Approximate minimum found at point %f with value %f\n', c, f(c));
end
% 示例:对一个函数进行黄金分割搜索
fun = @(x) x^2 - 2; % 任意一个连续可微函数作为示例
[a, b] = -5, 5; % 设定搜索区间
goldenSectionSearch(fun, a, b);
```
当你运行此程序时,它会在每次迭代时打印出搜索区间、插入点以及区间的当前长度。请注意,为了得到最佳效果,需要提供一个具体的连续函数`f`作为输入参数。
阅读全文