这段代码是什么意思? int k = start; v[start] = start; z[start] = std::numeric_limits<double>::max(); z[start + 1] = std::numeric_limits<double>::max();
时间: 2023-04-04 07:01:41 浏览: 119
这段代码的意思是:定义一个整型变量 k 并将其赋值为 start,将数组 v 的 start 位置赋值为 start,将数组 z 的 start 和 start+1 位置分别赋值为 double 类型的最大值。
相关问题
这段代码什么意思? int v[mp_.map_voxel_num_(dim)]; double z[mp_.map_voxel_num_(dim) + 1]; int k = start; v[start] = start; z[start] = std::numeric_limits<double>::max(); //赋值为double类型最大值 z[start + 1] = std::numeric_limits<double>::max(); for (int q = start + 1; q <= end; q++) { k++; double s; do { k--; s = ((f_get_val(q) + q * q) - (f_get_val(v[k]) + v[k] * v[k])) / (2 * q - 2 * v[k]); } while (s <= z[k]); k++; v[k] = q; z[k] = s; z[k + 1] = std::numeric_limits<double>::max(); } k = start; for (int q = start; q <= end; q++) { while (z[k + 1] < q) k++; double val = (q - v[k]) * (q - v[k]) + f_get_val(v[k]); f_set_val(q, val); }
这段代码是一个数值计算中的一种算法,叫做分段函数逼近算法。它的作用是用一些简单的函数来逼近一个复杂的函数,从而简化计算。具体实现中,它通过不断地找到两个点之间的最优拟合函数,来逐步逼近整个函数。其中,v数组存储的是已经找到的最优点,z数组存储的是对应的最优函数值。在第一个for循环中,它不断地更新v和z数组,直到找到整个函数的最优逼近。在第二个for循环中,它利用已经找到的最优点和函数值,来计算整个函数在每个点上的近似值。
import heapqdef prim(graph, start): n = len(graph) visited = [False] * n distance = [float('inf')] * n distance[start] = 0 heap = [(0, start)] while heap: _, u = heapq.heappop(heap) if visited[u]: continue visited[u] = True for v, w in graph[u]: if not visited[v] and w < distance[v]: distance[v] = w heapq.heappush(heap, (w, v)) return sum(distance)def min_distance_sum(graph): n = len(graph) min_distance = float('inf') for i in range(n): distance_sum = prim(graph, i) min_distance = min(min_distance, distance_sum) return min_distancegraph = [ [(1, 2), (2, 1)], [(0, 2), (2, 3), (3, 1)], [(0, 1), (1, 3), (3, 1)], [(1, 1), (2, 1)]]print(min_distance_sum(graph)) # 输出:4把这段代码转换成c++
以下是将 Python 代码转换为 C++ 的版本:
```cpp
#include <iostream>
#include <vector>
#include <queue>
#include <limits>
using namespace std;
typedef pair<int, int> pii;
int prim(vector<vector<pii>>& graph, int start) {
int n = graph.size();
vector<bool> visited(n, false);
vector<int> distance(n, numeric_limits<int>::max());
distance[start] = 0;
priority_queue<pii, vector<pii>, greater<pii>> pq;
pq.push({0, start});
while (!pq.empty()) {
int u = pq.top().second;
pq.pop();
if (visited[u]) {
continue;
}
visited[u] = true;
for (auto [v, w] : graph[u]) {
if (!visited[v] && w < distance[v]) {
distance[v] = w;
pq.push({w, v});
}
}
}
int sum = 0;
for (int i = 0; i < n; i++) {
sum += distance[i];
}
return sum;
}
int min_distance_sum(vector<vector<pii>>& graph) {
int n = graph.size();
int min_distance = numeric_limits<int>::max();
for (int i = 0; i < n; i++) {
int distance_sum = prim(graph, i);
min_distance = min(min_distance, distance_sum);
}
return min_distance;
}
int main() {
vector<vector<pii>> graph = {
{{1, 2}, {2, 1}},
{{0, 2}, {2, 3}, {3, 1}},
{{0, 1}, {1, 3}, {3, 1}},
{{1, 1}, {2, 1}}
};
cout << min_distance_sum(graph) << endl; // 输出:4
return 0;
}
```
阅读全文