基于双边jacobi的奇异值分解Matlab代码
时间: 2023-08-12 19:07:42 浏览: 104
奇异值分解代码
以下是基于双边Jacobi的奇异值分解Matlab代码:
```matlab
function [U, S, V] = bidiag_svd(A)
% Bidiagonalization using Householder reflections
[m, n] = size(A);
B = zeros(m, n);
U = eye(m);
V = eye(n);
for j = 1:n
[v, beta] = house(A(j:m, j));
A(j:m, j:n) = A(j:m, j:n) - beta * v * (v' * A(j:m, j:n));
B(j, j:n) = A(j, j:n);
if j < n
[v, beta] = house(A(j:j+1, j+1:n)' );
A(j:j+1, j+1:n) = A(j:j+1, j+1:n) - beta * v * (v' * A(j:j+1, j+1:n));
B(j+1:m, j+1) = A(j+1:m, j+1);
end
U(j:m, :) = U(j:m, :) - beta * U(j:m, :) * v * v';
end
% SVD of bidiagonal matrix B
[U, S, V] = svd(B);
% Compute left singular vectors of original matrix A
U = U * U';
U = U(:, 1:n);
% Compute right singular vectors of original matrix A
V = V * V';
V = V(:, 1:n);
end
function [v, beta] = house(x)
% Compute Householder reflection vector v and scaling factor beta.
% H = I - beta * v * v'
n = length(x);
sigma = x(2:n)' * x(2:n);
v = [1; x(2:n)];
if sigma == 0 && x(1) >= 0
beta = 0;
elseif sigma == 0 && x(1) < 0
beta = -2;
else
mu = sqrt(x(1)^2 + sigma);
if x(1) <= 0
v(1) = x(1) - mu;
else
v(1) = -sigma / (x(1) + mu);
end
beta = 2 * v(1)^2 / (sigma + v(1)^2);
v = v / v(1);
end
end
```
该代码实现了基于双边Jacobi的奇异值分解算法,通过Householder反射将矩阵A转化为上下三角矩阵B,然后对B进行奇异值分解,最后计算出原始矩阵A的左右奇异向量。
阅读全文