(sin(x))^-1的积分
时间: 2023-06-02 17:02:24 浏览: 207
这里的(sin(x))^-1是sin(x)的反函数,也就是arcsin(x),因此积分为:
∫(sin(x))^-1 dx = ∫arcsin(x) dx
我们可以使用分部积分法来求解这个积分:
令 u = arcsin(x),dv = dx,则 du/dx = 1/√(1-x^2),v = x
∫arcsin(x) dx = xarcsin(x) - ∫x * (1/√(1-x^2)) dx
令 u = 1/√(1-x^2),dv = x dx,则 du/dx = x/[(1-x^2)^(3/2)],v = 1/2 * x^2
∫arcsin(x) dx = xarcsin(x) - x√(1-x^2)/2 + ∫(1/√(1-x^2)) * x^2 dx
对最后一个积分再次使用分部积分法:
令 u = x,dv = (1/√(1-x^2)) dx,则 du/dx = 1,v = arcsin(x)
∫(1/√(1-x^2)) * x^2 dx = x * arcsin(x) - ∫arcsin(x) dx
将∫arcsin(x) dx代入上式:
∫(1/√(1-x^2)) * x^2 dx = x * arcsin(x) - x√(1-x^2)/2 - ∫xarcsin(x) dx
移项得:
2∫arcsin(x) dx = x * arcsin(x) - x√(1-x^2)/2 + x * arcsin(x) - 2∫arcsin(x) dx
化简得:
3∫arcsin(x) dx = x * arcsin(x) - x√(1-x^2)/2
最终结果为:
∫arcsin(x) dx = (2/3) * x * arcsin(x) + (1/3) * x√(1-x^2) + C,其中C为常数。
阅读全文