STM32F103C8T6实现循迹的代码?
时间: 2024-06-18 11:04:55 浏览: 119
实现循迹的代码需要配合相应的硬件电路才能正常运行,具体的实现方式也会因为硬件电路的不同而有所差异。在STM32F103C8T6中,可以通过ADC模块采集传感器数据,然后根据不同的传感器数值来控制电机运动,从而实现循迹。
以下是一个简单的STM32F103C8T6实现循迹的代码示例:
```
#include "stm32f10x.h"
#include "stm32f10x_adc.h"
#include "stm32f10x_gpio.h"
#include "stm32f10x_rcc.h"
#include "stm32f10x_tim.h"
#define SensorLeft GPIO_Pin_0
#define SensorMiddle GPIO_Pin_1
#define SensorRight GPIO_Pin_2
#define MotorLeft1 GPIO_Pin_3
#define MotorLeft2 GPIO_Pin_4
#define MotorRight1 GPIO_Pin_5
#define MotorRight2 GPIO_Pin_6
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE);
// 配置传感器引脚为输入模式
GPIO_InitStructure.GPIO_Pin = SensorLeft | SensorMiddle | SensorRight;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// 配置电机引脚为输出模式
GPIO_InitStructure.GPIO_Pin = MotorLeft1 | MotorLeft2 | MotorRight1 | MotorRight2;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
}
void ADC_Configuration(void)
{
ADC_InitTypeDef ADC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
ADC_DeInit(ADC1);
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_Cmd(ADC1, ENABLE);
// 配置ADC通道
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_239Cycles5);
}
void TIM_Configuration(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
TIM_TimeBaseStructure.TIM_Period = 899;
TIM_TimeBaseStructure.TIM_Prescaler = 719;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
// 配置PWM输出引脚
TIM_OC1Init(TIM3, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_Cmd(TIM3, ENABLE);
}
void delay_ms(uint16_t ms)
{
uint16_t i, j;
for (i = 0; i < ms; i++)
for (j = 0; j < 1141; j++)
__NOP();
}
int main(void)
{
int left, middle, right;
GPIO_Configuration();
ADC_Configuration();
TIM_Configuration();
while (1)
{
// 读取传感器数值
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
while (!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC))
;
left = ADC_GetConversionValue(ADC1);
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
while (!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC))
;
middle = ADC_GetConversionValue(ADC1);
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
while (!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC))
;
right = ADC_GetConversionValue(ADC1);
// 根据传感器数值控制电机运动
if (middle > 500)
{
GPIO_SetBits(GPIOB, MotorLeft1);
GPIO_ResetBits(GPIOB, MotorLeft2);
GPIO_SetBits(GPIOB, MotorRight1);
GPIO_ResetBits(GPIOB, MotorRight2);
}
else if (left > right)
{
GPIO_SetBits(GPIOB, MotorLeft1);
GPIO_ResetBits(GPIOB, MotorLeft2);
GPIO_ResetBits(GPIOB, MotorRight1);
GPIO_SetBits(GPIOB, MotorRight2);
}
else if (right > left)
{
GPIO_ResetBits(GPIOB, MotorLeft1);
GPIO_SetBits(GPIOB, MotorLeft2);
GPIO_SetBits(GPIOB, MotorRight1);
GPIO_ResetBits(GPIOB, MotorRight2);
}
delay_ms(10);
}
}
阅读全文