of_get_gpio_flag

时间: 2023-11-17 12:47:04 浏览: 77
GZ

xllp_gpio.gz_GPIO_xllp_gp

`of_get_gpio_flag` 是一个函数,用于获取设备树中 GPIO 节点的属性值。在 Linux 内核中,设备树(Device Tree)是一种描述硬件设备的数据结构,用于将硬件设备的信息传递给内核。GPIO(General Purpose Input/Output)是一种通用输入输出接口,可以通过软件控制硬件的输入和输出。 该函数的定义位于 Linux 内核的 `drivers/of/gpio.c` 文件中。它接受一个参数 `np`,表示指向 GPIO 节点的指针。函数会根据节点中的属性值,返回对应的标志位。 具体的使用方法和返回值依赖于具体的系统和环境,请提供更多上下文信息以获得更准确的答案。
阅读全文

相关推荐

import RPi.GPIO as GPIO from LCD1602 import LCD_1602 import time BtnPin = 13 R = 4 G = 12 B = 6 TRIG = 17 ECHO = 18 buzzer = 20 GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(TRIG, GPIO.OUT, initial=GPIO.LOW) GPIO.setup(ECHO, GPIO.IN) GPIO.setup(R, GPIO.OUT) GPIO.setup(B, GPIO.OUT) GPIO.setup(G, GPIO.OUT) GPIO.setup(buzzer, GPIO.OUT) GPIO.setup(BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.output(buzzer, GPIO.HIGH) m_lcd = LCD_1602(Address=0x27, bus_id=1, bl=1) flag = m_lcd.lcd_init() def get_distance(): GPIO.output(TRIG, GPIO.HIGH) time.sleep(0.000015) GPIO.output(TRIG, GPIO.LOW) while not GPIO.input(ECHO): pass t1 = time.time() while GPIO.input(ECHO): pass t2 = time.time() distance = round((t2-t1) * 340 / 2, 5) return distance def display_distance(distance): a = '%f'%distance m_lcd.lcd_display_string(0, 0, 'The distance is') m_lcd.lcd_display_string(0, 1, a) m_lcd.lcd_display_string(8, 1, 'm') def turn_on_red(): GPIO.output(R, GPIO.HIGH) def turn_on_green(): GPIO.output(G, GPIO.HIGH) def turn_on_blue(): GPIO.output(B, GPIO.HIGH) def turn_off_leds(): GPIO.output(R, GPIO.LOW) GPIO.output(G, GPIO.LOW) GPIO.output(B, GPIO.LOW) def turn_on_buzzer(): GPIO.output(buzzer, GPIO.LOW) def turn_off_buzzer(): GPIO.output(buzzer, GPIO.HIGH) def main(): while True: if GPIO.input(BtnPin) == 0: flag += 1 elif GPIO.input(BtnPin) == 1: pass if flag % 2 == 0: turn_off_leds() turn_on_buzzer() distance = get_distance() if distance < 0.2: turn_on_blue() turn_off_buzzer() display_distance(distance) time.sleep(1) elif flag % 2 == 1: turn_on_green() if __name__ == '__main__': main() GPIO.cleanup(),帮我把每一行代码注释一下

解释代码extern u16 ONE_SECOND_REACH_FLAG; extern u32 time_times; extern u32 alarm_delay_time; extern u16 alarm_delay_flag; extern uint32_t INPUT_DATA; u16 FARAWAY_SWTICH_FLAG = 0; u16 LOCAL_SWTICH_FLAG = 0; extern u16 CONTROL_COIL_DATA; u16 local_control_flag = 0; u16 far_control_flag = 0; extern u16 SET_PWM_DATA[4]; int main(void) { SystemInit(); NVIC_Configuration(); FLASH_Unlock(); RELAY_OUTPUT_IO_Init(); Adc_Init(); WWDG_NVIC_Init(); Timer2_Init(); CAN_Config(); SWITCH_INPUT_GPIO_Config(); USART5_Initialise(38400); NETIP_to_mcu_Initialise(9600); USART422_Initialise(9600); USART232_Initialise(9600); //初始化 RTU模式 从机地址为1 UART2 9600 无校验 eMBInit(MB_RTU, 0x01, 0x01, 9600, MB_PAR_NONE); //启动FreeModbus eMBEnable(); while (1) { // INPUT_DATA = 0x00000004; Calcu_FP_TEMP(); eMBPoll(); //modbus if (ONE_SECOND_REACH_FLAG) //1s { ONE_SECOND_REACH_FLAG = 0; // get422_ready_data(); //422 // netip_get_work_state_data(); //网口 // get232_ready_register(); //232 getusart5_ready_data(); } // SET_PWM_DATA[0] = 50; // SET_PWM_DATA[1] = 50; // SET_PWM_DATA[2] = 50; // SET_PWM_DATA[3] = 50; // scheduled_can_transmission();//can scan_input_state(); // communication485_protocol_solution();//485 //通信收发机 协议 方案 communicationusart5_protocol_solution(); //103 // getusart5_ready_data(); //获取485准备指示 get485_ready_register(); // communication422_protocol_solution(); // netip_communication_protocol_solution(); // communication_uart3_protocol_solution(); //232 //测试板 test_board_prog(); //控制 线圈 CONTROL_COIL(); } }

#include "USART.h" #include "contral.h" #define P_ARR_MAX 50 #define Us_ARR_MAX 10 double VIN_DAS[4]; u16 pwm1_arr=1800,pwm1_psc=2,//pwm1初始arr psc 72000/2/1800=20khz pwm pwm2_arr=1800,pwm2_psc=2;//pwm2初始arr psc u16 pwm1_pluse,pwm2_pluse ; //pwm1/2占空比ccr寄存器值 float ku=21.68,ki=1.055; float UIn_ad,IIn_ad,Uo_ad,Ub_ad,Ib_ad,Ib; float Us0=0,Us=0,Uo=30,Uobase=30,p; int cnt=20,cnt_getUs=10; int flag1=0,flag2=0,i=P_ARR_MAX,flagPlus=0,flagMinus=0; float step=0.0; vu8 key=0; /*************电路初始化************/ void Init() { //1 pwm1 通过一个循环来进行滤波操作,然后根据滤波后的结果计算出 pwm1_pluse 的值 while(cnt>0) { adsfilter(0);adsfilter(1); UIn_ad=VIN_DAS[0]*ku; IIn_ad=VIN_DAS[1]*ki; Us0=IIn_ad*10+UIn_ad; cnt--; } pwm1_pluse=Us0/60.0*pwm1_arr; // TIM4_PWM_Init(pwm1_arr,pwm1_psc); // TIM_SetCompare1(TIM4,pwm1_pluse); //2 EN delay_ms(50); GPIO_SetBits(GPIOB,GPIO_Pin_15); delay_ms(50); //3 pwm2 cnt=20; while(cnt>0) { adsfilter(2); adsfilter(3); Uo_ad=VIN_DAS[2]*ku; Ub_ad=VIN_DAS[3]*ku; cnt--; } pwm2_pluse=Ub_ad/Uo_ad*pwm2_arr; TIM3_PWM_Init(pwm2_arr,pwm2_psc); TIM_SetCompare2(TIM3,pwm2_pluse); //4 EN delay_ms(50); GPIO_SetBits(GPIOB,GPIO_Pin_12); delay_ms(50); } /*************电路初始化************/ /*************采样*************/ void caiyang() { adsfilter(0);adsfilter(1);adsfilter(2); adsfilter(3); UIn_ad=VIN_DAS[0]*ku; UIn_ad=UIn_ad*0.9554+0.0127; IIn_ad=VIN_DAS[1]*ki; IIn_ad=IIn_ad*0.9906-0.0021; Uo_ad=VIN_DAS[2]*21.05; //Uo_ad=Uo_ad*0.9991+1.2882; Ub_ad=VIN_DAS[3]*21.15; Ub_ad=Ub_ad*0.859+1.8277; Ib_ad=Get_Adc(1)*(3.3/4096); Ib=(Ib_ad-1.39)/0.428+0.12; Us=IIn_ad*10+UIn_ad; Us=1.0084*Us-0.0239; }

解释这段代码:#include "delay.h" #include "LED.h" #include "BEEP.h" #include "IIC.h" #include "OLED.h" #include "ADC.h" #include "stdio.h" #include "0_20OUT.h" #include "KEY.h" int limit_High_MAX = 300; int limit_High_MIN = 50; struct _pid{ int SetHigh;//定义设定值 int ActualHigh;//定义实际值 int err;//定义偏差值 int err_next;//定义上一个偏差值 int err_last;//定义最上前的偏差值 float Kp, Ki, Kd;//定义比例、积分、微分系数 }pid; void PID_init(){ pid.SetHigh = 0; pid.ActualHigh = 0; pid.err = 0; pid.err_last = 0; pid.err_next = 0; pid.Kp = 0.4; pid.Ki = 0.08; pid.Kd = 0.4; } int PID_realize(int high){ int incrementHigh; pid.SetHigh = high; pid.err = pid.SetHigh - pid.ActualHigh; incrementHigh = pid.Kp*(pid.err - pid.err_next) + pid.Ki*pid.err + pid.Kd*(pid.err - 2 * pid.err_next + pid.err_last);//计算出增量 pid.err_last = pid.err_next; pid.err_next = pid.err; return incrementHigh; } int main(void) { u16 AD_Value; float ADv1; int KEY,FLAG=1; delay_init(); IIC_GPIO_Config(); //IIC引脚初始化 OLED_Init(); AD_Init(); LED_GPIO_Config(); //LED引脚初始化(用于提示) BEEP_GPIO_Config(); //蜂鸣器引脚初始化(用于提示) KEY_GPIO_CONFIG(); while(1) { AD_Value = Get_ADC_Value(ADC_Channel_1,20); //获取ADC的通道1数值 ADv1=(float)AD_Value / 4095 *3.3; pid.ActualHigh = ADv1*150;//实际高度 MCP4725_WriteData_Volatge(PID_realize(pid.ActualHigh));//输出对应的控制电流 OLED_ShowNum(0,0,pid.ActualHigh,5,1); //显示实际高度 OLED_ShowNum(0,2,PID_realize(pid.ActualHigh),5,1); //开度大小 OLED_ShowNum(0,4,limit_High_MIN,3,1); //高度最小值 OLED_ShowNum(20,4,limit_High_MAX,3,1);//高度最大值 LED(ON); KEY = KEY_SCAN(); switch (KEY) { case 1: if(FLAG == 1) limit_High_MAX -= 10; else limit_High_MIN -= 10;break; case 2: if(FLAG == 1) limit_High_MAX += 10; else limit_High_MIN += 10;break; case 3: pid.SetHigh -= 10;break; case 4: pid.SetHigh += 10;break; case 5: FLAG = (FLAG+1)%2;break;//控制加减最大值还是最小值 } //报警提示 if(pid.ActualHigh>limit_High_MAX) { BEEP(ON); } else if(pid.ActualHigh<limit_High_MIN) { LED(ON); } else { BEEP(OFF); LED(OFF); } } return 0; }

最新推荐

recommend-type

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件.zip

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件如果权重无法下载,则可能是存储库超出了 git lfs 配额。请从没有此限制的bitbucket 存储库中提取。此存储库包含 yolov3 权重以及配置文件。该模型在Kaggle Open Images 挑战赛的私有 LB 上实现了 42.407 的 mAP 。为了使用这些权重,您需要安装darknet 。您可以在项目网站上阅读更多相关信息。有多种方法可以使用 darknet 进行检测。一种方法是创建一个 txt 文件,其中包含要运行检测的图像的路径,并从包含的 yolo.data 文件中指向该文件。运行检测的命令(假设 darknet 安装在该 repo 的根目录中)是 ./darknet/darknet detector valid yolo.data yolov3-spp.cfg yolov3-spp_final.weights我分享这些权重是因为它们可能对某些人有用。如果您遇到任何问题,我无法提供任何支持。Yolo 不太容易排除故障,如果您遇到段错误,则需要您自己找出问题所
recommend-type

qt 5.3.2 mingw 安装包

qt 5.3.2 mingw 安装包
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001