of_get_gpio_flag

时间: 2023-11-17 11:47:04 浏览: 37
`of_get_gpio_flag` 是一个函数,用于获取设备树中 GPIO 节点的属性值。在 Linux 内核中,设备树(Device Tree)是一种描述硬件设备的数据结构,用于将硬件设备的信息传递给内核。GPIO(General Purpose Input/Output)是一种通用输入输出接口,可以通过软件控制硬件的输入和输出。 该函数的定义位于 Linux 内核的 `drivers/of/gpio.c` 文件中。它接受一个参数 `np`,表示指向 GPIO 节点的指针。函数会根据节点中的属性值,返回对应的标志位。 具体的使用方法和返回值依赖于具体的系统和环境,请提供更多上下文信息以获得更准确的答案。
相关问题

int gpio_irq(int gpio_num, char* flag, void* (*irq_handler)(void*), void* arg) { int value = 0; gpio_export(gpio_num); gpio_set_direction(gpio_num, "in"); gpio_set_edge(gpio_num, flag); gpio_set_active_low(gpio_num, 0); while(1) { if((value = gpio_get_value(gpio_num)) == 1) { irq_handler(arg); value = 0; break; } } return 0; }

根据您提供的代码,我认为可以进行如下优化: 1. 增加错误处理:在函数开始处添加错误处理,以检查GPIO导出、方向设置和触发方式设置是否成功。如果失败,应该返回错误代码或打印错误信息。 2. 增加延时:在while循环内部添加一定的延时,以避免过多占用CPU资源。 3. 增加错误处理:在while循环中,如果`gpio_get_value(gpio_num)`函数返回错误,应该进行错误处理。 4. 优化代码逻辑:当前的代码在检测到GPIO电平变化时会立即调用中断处理程序,并退出函数,这可能会导致一些问题。我的建议是,在while循环中检测到GPIO电平变化时,先调用中断处理程序,然后继续等待GPIO电平变化,直到函数被显式调用退出。 优化后的代码如下: ```cpp int gpio_irq(int gpio_num, char* flag, void* (*irq_handler)(void*), void* arg) { int value = 0, ret = 0; ret = gpio_export(gpio_num); if (ret < 0) { printf("Error: failed to export GPIO %d!\n", gpio_num); return ret; } ret = gpio_set_direction(gpio_num, "in"); if (ret < 0) { printf("Error: failed to set direction for GPIO %d!\n", gpio_num); return ret; } ret = gpio_set_edge(gpio_num, flag); if (ret < 0) { printf("Error: failed to set edge for GPIO %d!\n", gpio_num); return ret; } gpio_set_active_low(gpio_num, 0); while (1) { if ((value = gpio_get_value(gpio_num)) < 0) { printf("Error: failed to read value of GPIO %d!\n", gpio_num); return value; } if (value == 1) { irq_handler(arg); } usleep(500); // 延时 500us } return 0; } ``` 需要注意的是,这只是一种优化方式,具体的优化方案还需要根据实际情况进行选择。

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){ if (htim == &htim2){ if (__HAL_TIM_GET_FLAG(&htim2, TIM_FLAG_UPDATE) != RESET) { static int cnt=0; cnt++; if(cnt%2==0){ HAL_GPIO_WritePin(GPIOA,GPIO_PIN_0,GPIO_PIN_RESET); } else {HAL_GPIO_WritePin(GPIOA,GPIO_PIN_2,GPIO_PIN_RESET);} __HAL_TIM_CLEAR_FLAG(&htim2,TIM_FLAG_UPDATE); } } }分析代码

这段代码是一个定时器中断回调函数,当定时器的周期结束时会触发该函数。函数中的if语句判断了触发中断的定时器是否为htim2。如果是htim2,则执行if语句块内的代码。 在if语句块内部,首先通过__HAL_TIM_GET_FLAG函数检查htim2的更新标志是否被置位,如果是,则执行if语句块内部的代码。 代码中定义了一个静态变量cnt,并在每次回调函数被触发时自增。然后通过判断cnt的奇偶性来设置GPIOA的引脚状态。如果cnt是偶数,则将GPIOA的0号引脚置低电平;如果cnt是奇数,则将GPIOA的2号引脚置低电平。 最后,通过__HAL_TIM_CLEAR_FLAG函数清除htim2的更新标志,完成中断处理。 需要注意的是,这段代码只分析了htim2的情况,对于其他定时器的情况并没有进行处理。

相关推荐

import RPi.GPIO as GPIO from LCD1602 import LCD_1602 import time BtnPin = 13 R = 4 G = 12 B = 6 TRIG = 17 ECHO = 18 buzzer = 20 GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(TRIG, GPIO.OUT, initial=GPIO.LOW) GPIO.setup(ECHO, GPIO.IN) GPIO.setup(R, GPIO.OUT) GPIO.setup(B, GPIO.OUT) GPIO.setup(G, GPIO.OUT) GPIO.setup(buzzer, GPIO.OUT) GPIO.setup(BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.output(buzzer, GPIO.HIGH) m_lcd = LCD_1602(Address=0x27, bus_id=1, bl=1) flag = m_lcd.lcd_init() def get_distance(): GPIO.output(TRIG, GPIO.HIGH) time.sleep(0.000015) GPIO.output(TRIG, GPIO.LOW) while not GPIO.input(ECHO): pass t1 = time.time() while GPIO.input(ECHO): pass t2 = time.time() distance = round((t2-t1) * 340 / 2, 5) return distance def display_distance(distance): a = '%f'%distance m_lcd.lcd_display_string(0, 0, 'The distance is') m_lcd.lcd_display_string(0, 1, a) m_lcd.lcd_display_string(8, 1, 'm') def turn_on_red(): GPIO.output(R, GPIO.HIGH) def turn_on_green(): GPIO.output(G, GPIO.HIGH) def turn_on_blue(): GPIO.output(B, GPIO.HIGH) def turn_off_leds(): GPIO.output(R, GPIO.LOW) GPIO.output(G, GPIO.LOW) GPIO.output(B, GPIO.LOW) def turn_on_buzzer(): GPIO.output(buzzer, GPIO.LOW) def turn_off_buzzer(): GPIO.output(buzzer, GPIO.HIGH) def main(): while True: if GPIO.input(BtnPin) == 0: flag += 1 elif GPIO.input(BtnPin) == 1: pass if flag % 2 == 0: turn_off_leds() turn_on_buzzer() distance = get_distance() if distance < 0.2: turn_on_blue() turn_off_buzzer() display_distance(distance) time.sleep(1) elif flag % 2 == 1: turn_on_green() if __name__ == '__main__': main() GPIO.cleanup(),帮我把每一行代码注释一下

解释代码extern u16 ONE_SECOND_REACH_FLAG; extern u32 time_times; extern u32 alarm_delay_time; extern u16 alarm_delay_flag; extern uint32_t INPUT_DATA; u16 FARAWAY_SWTICH_FLAG = 0; u16 LOCAL_SWTICH_FLAG = 0; extern u16 CONTROL_COIL_DATA; u16 local_control_flag = 0; u16 far_control_flag = 0; extern u16 SET_PWM_DATA[4]; int main(void) { SystemInit(); NVIC_Configuration(); FLASH_Unlock(); RELAY_OUTPUT_IO_Init(); Adc_Init(); WWDG_NVIC_Init(); Timer2_Init(); CAN_Config(); SWITCH_INPUT_GPIO_Config(); USART5_Initialise(38400); NETIP_to_mcu_Initialise(9600); USART422_Initialise(9600); USART232_Initialise(9600); //初始化 RTU模式 从机地址为1 UART2 9600 无校验 eMBInit(MB_RTU, 0x01, 0x01, 9600, MB_PAR_NONE); //启动FreeModbus eMBEnable(); while (1) { // INPUT_DATA = 0x00000004; Calcu_FP_TEMP(); eMBPoll(); //modbus if (ONE_SECOND_REACH_FLAG) //1s { ONE_SECOND_REACH_FLAG = 0; // get422_ready_data(); //422 // netip_get_work_state_data(); //网口 // get232_ready_register(); //232 getusart5_ready_data(); } // SET_PWM_DATA[0] = 50; // SET_PWM_DATA[1] = 50; // SET_PWM_DATA[2] = 50; // SET_PWM_DATA[3] = 50; // scheduled_can_transmission();//can scan_input_state(); // communication485_protocol_solution();//485 //通信收发机 协议 方案 communicationusart5_protocol_solution(); //103 // getusart5_ready_data(); //获取485准备指示 get485_ready_register(); // communication422_protocol_solution(); // netip_communication_protocol_solution(); // communication_uart3_protocol_solution(); //232 //测试板 test_board_prog(); //控制 线圈 CONTROL_COIL(); } }

最新推荐

recommend-type

ansys maxwell

ansys maxwell
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。