在三个主应力空间内,MATLAB绘制mises和tresca屈服轮廓在π平面的投影
时间: 2023-12-10 16:41:05 浏览: 108
首先,需要定义三个主应力值,比如sigma1、sigma2、sigma3。然后,需要计算Mises和Tresca的屈服准则,分别为:
Mises屈服准则:
```matlab
s = (sigma1 - sigma2)^2 + (sigma2 - sigma3)^2 + (sigma3 - sigma1)^2;
vm = sqrt(3/2 * s);
```
Tresca屈服准则:
```matlab
vt = max(abs(sigma1-sigma2), abs(sigma2-sigma3), abs(sigma3-sigma1));
```
接着,我们可以在π平面上绘制Mises和Tresca的屈服轮廓。具体步骤如下:
```matlab
% 定义三个主应力值
sigma1 = 10;
sigma2 = 5;
sigma3 = 2;
% 计算Mises和Tresca的屈服准则
s = (sigma1 - sigma2)^2 + (sigma2 - sigma3)^2 + (sigma3 - sigma1)^2;
vm = sqrt(3/2 * s);
vt = max(abs(sigma1-sigma2), abs(sigma2-sigma3), abs(sigma3-sigma1));
% 绘制π平面
theta = linspace(0, 2*pi, 100);
x = cos(theta);
y = sin(theta);
plot(x, y, 'k--');
axis equal;
hold on;
% 绘制Mises屈服轮廓
r = vm/sqrt(2);
plot(r*cos(theta), r*sin(theta), 'r', 'LineWidth', 2);
% 绘制Tresca屈服轮廓
r = vt/sqrt(2);
plot(r*cos(theta), r*sin(theta), 'b', 'LineWidth', 2);
% 添加标签
title('Mises and Tresca Yield Contours');
xlabel('\pi_1');
ylabel('\pi_2');
legend('π plane', 'Mises', 'Tresca');
```
运行上述代码,将得到Mises和Tresca的屈服轮廓在π平面的投影。
阅读全文