NX8.5,用C++ 写一个OBB算法,获取对象的最小包容盒
时间: 2023-12-14 22:38:31 浏览: 178
OBB(Oriented Bounding Box)算法是一种用于计算三维物体的最小包围盒的方法,它可以获取到物体的最小包容盒。下面是一个基于C++的OBB算法实现示例:
```c++
#include <iostream>
#include <vector>
using namespace std;
struct Point
{
double x, y, z;
};
struct OBB
{
Point center;
vector<Point> axis;
vector<double> extent;
};
// 计算点集的中心点
Point computeCenter(const vector<Point>& points)
{
Point center;
center.x = center.y = center.z = 0.0;
for (unsigned int i = 0; i < points.size(); ++i)
{
center.x += points[i].x;
center.y += points[i].y;
center.z += points[i].z;
}
center.x /= points.size();
center.y /= points.size();
center.z /= points.size();
return center;
}
// 计算协方差矩阵
void computeCovarianceMatrix(const vector<Point>& points, const Point& center, double* matrix)
{
for (int i = 0; i < 9; ++i)
{
matrix[i] = 0.0;
}
for (unsigned int i = 0; i < points.size(); ++i)
{
double x = points[i].x - center.x;
double y = points[i].y - center.y;
double z = points[i].z - center.z;
matrix[0] += x * x;
matrix[1] += x * y;
matrix[2] += x * z;
matrix[3] += y * x;
matrix[4] += y * y;
matrix[5] += y * z;
matrix[6] += z * x;
matrix[7] += z * y;
matrix[8] += z * z;
}
}
// 计算特征值和特征向量
void computeEigen(const double* matrix, double* eigenvalues, double* eigenvectors)
{
// 使用Jacobi算法计算特征值和特征向量
const int n = 3;
double* off = new double[n];
double* p = new double[n * n];
double* q = new double[n * n];
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
p[i * n + j] = matrix[i * n + j];
q[i * n + j] = 0.0;
}
q[i * n + i] = 1.0;
off[i] = 0.0;
}
for (int k = 0; k < 50; ++k)
{
double s = 0.0;
for (int i = 0; i < n - 1; ++i)
{
for (int j = i + 1; j < n; ++j)
{
double f = p[i * n + j];
s += f * f;
double h = off[j] - off[i];
double c = 1.0;
if (fabs(h) > 1e-12)
{
double t = (p[i * n + i] - p[j * n + j]) / (2.0 * h);
double d = sqrt(1.0 + t * t);
if (t < 0.0)
{
d = -d;
}
c = 1.0 / sqrt(2.0 + (1.0 / d));
}
double sa = c;
double sb = (fabs(c) < 1e-12) ? 1.0 : (1.0 / (c * d));
off[i] -= f;
off[j] += f;
for (int l = 0; l < n; ++l)
{
double t = p[i * n + l] * sa + p[j * n + l] * sb;
p[j * n + l] = p[i * n + l] * (-sb) + p[j * n + l] * sa;
p[i * n + l] = t;
}
for (int l = 0; l < n; ++l)
{
double t = p[l * n + i] * sa + p[l * n + j] * sb;
p[l * n + j] = p[l * n + i] * (-sb) + p[l * n + j] * sa;
p[l * n + i] = t;
}
for (int l = 0; l < n; ++l)
{
double t = q[i * n + l] * sa + q[j * n + l] * sb;
q[j * n + l] = q[i * n + l] * (-sb) + q[j * n + l] * sa;
q[i * n + l] = t;
}
}
}
eigenvalues[0] = off[0] + s;
eigenvalues[1] = off[1] + s;
eigenvalues[2] = off[2] + s;
for (int i = 0; i < n; ++i)
{
eigenvectors[i * n + 0] = q[i * n + 0];
eigenvectors[i * n + 1] = q[i * n + 1];
eigenvectors[i * n + 2] = q[i * n + 2];
}
if (fabs(p[0]) <= 1e-12 && fabs(p[1]) <= 1e-12 && fabs(p[2]) <= 1e-12 && fabs(p[3]) <= 1e-12 && fabs(p[4]) <= 1e-12 && fabs(p[5]) <= 1e-12 && fabs(p[6]) <= 1e-12 && fabs(p[7]) <= 1e-12 && fabs(p[8]) <= 1e-12)
{
break;
}
}
delete[] off;
delete[] p;
delete[] q;
}
// 计算OBB
OBB computeOBB(const vector<Point>& points)
{
OBB obb;
obb.center = computeCenter(points);
double matrix[9];
computeCovarianceMatrix(points, obb.center, matrix);
double eigenvalues[3];
double eigenvectors[9];
computeEigen(matrix, eigenvalues, eigenvectors);
obb.axis.resize(3);
obb.extent.resize(3);
for (int i = 0; i < 3; ++i)
{
obb.axis[i].x = eigenvectors[0 * 3 + i];
obb.axis[i].y = eigenvectors[1 * 3 + i];
obb.axis[i].z = eigenvectors[2 * 3 + i];
obb.extent[i] = sqrt(eigenvalues[i]);
}
return obb;
}
int main()
{
vector<Point> points;
points.push_back({ 0.0, 0.0, 0.0 });
points.push_back({ 1.0, 1.0, 1.0 });
points.push_back({ -1.0, 1.0, 1.0 });
points.push_back({ 1.0, -1.0, 1.0 });
points.push_back({ 1.0, 1.0, -1.0 });
OBB obb = computeOBB(points);
cout << "Center: (" << obb.center.x << ", " << obb.center.y << ", " << obb.center.z << ")" << endl;
cout << "Axis1: (" << obb.axis[0].x << ", " << obb.axis[0].y << ", " << obb.axis[0].z << ")" << endl;
cout << "Axis2: (" << obb.axis[1].x << ", " << obb.axis[1].y << ", " << obb.axis[1].z << ")" << endl;
cout << "Axis3: (" << obb.axis[2].x << ", " << obb.axis[2].y << ", " << obb.axis[2].z << ")" << endl;
cout << "Extent1: " << obb.extent[0] << endl;
cout << "Extent2: " << obb.extent[1] << endl;
cout << "Extent3: " << obb.extent[2] << endl;
return 0;
}
```
这个示例程序中,我们定义了一个Point结构体表示三维空间中的一个点,另外定义了一个OBB结构体表示物体的最小包容盒。我们首先实现了computeCenter函数来计算点集的中心点,然后实现了computeCovarianceMatrix函数来计算协方差矩阵,最后实现了computeEigen函数来计算特征值和特征向量。
在computeOBB函数中,我们首先计算点集的中心点,然后计算出协方差矩阵和特征值、特征向量,最后将特征向量作为包容盒的轴,将特征值开方作为包容盒的半长轴长度,并返回OBB结构体。
在main函数中,我们定义了一个点集points,将其传入computeOBB函数中计算出OBB,并输出OBB的信息。
需要注意的是,这个示例程序只是一个简单的实现示例,实际使用时需要考虑更多的情况,比如点集为空、点集只有一个点等特殊情况。
阅读全文