c++实现obb包围盒
时间: 2023-08-29 17:12:49 浏览: 594
OBB(Oriented Bounding Box)包围盒是一个可以包含物体的最小矩形,与物体的方向一致。以下是一个简单的C++实现:
首先,我们需要定义一个表示OBB的结构体:
```
struct OBB
{
Vector3 center; // 中心点
Vector3 axis[3]; // 三个轴
Vector3 extent; // 三个轴上的半径
};
```
其中,`Vector3`是一个表示三维向量的类,具体实现可以参考以下代码:
```
class Vector3
{
public:
float x, y, z;
Vector3() : x(0), y(0), z(0) {}
Vector3(float x, float y, float z) : x(x), y(y), z(z) {}
Vector3 operator+(const Vector3& v) const
{
return Vector3(x + v.x, y + v.y, z + v.z);
}
Vector3 operator-(const Vector3& v) const
{
return Vector3(x - v.x, y - v.y, z - v.z);
}
Vector3 operator*(float s) const
{
return Vector3(x * s, y * s, z * s);
}
Vector3 operator/(float s) const
{
return Vector3(x / s, y / s, z / s);
}
float Length() const
{
return sqrt(x * x + y * y + z * z);
}
void Normalize()
{
float length = Length();
x /= length;
y /= length;
z /= length;
}
static Vector3 Cross(const Vector3& v1, const Vector3& v2)
{
return Vector3(v1.y * v2.z - v1.z * v2.y,
v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x);
}
static float Dot(const Vector3& v1, const Vector3& v2)
{
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
};
```
接下来,我们需要实现一个函数来计算OBB包围盒。假设我们已有一个表示物体的三角面片的数组,每个面片由三个顶点构成,可以用以下代码来实现:
```
OBB CalculateOBB(const std::vector<Vector3>& vertices)
{
OBB obb;
// 计算中心点
obb.center = Vector3(0, 0, 0);
for (int i = 0; i < vertices.size(); i++)
{
obb.center = obb.center + vertices[i];
}
obb.center = obb.center / vertices.size();
// 计算协方差矩阵
Matrix3 cov;
for (int i = 0; i < vertices.size(); i++)
{
Vector3 v = vertices[i] - obb.center;
cov.m[0][0] += v.x * v.x;
cov.m[0][1] += v.x * v.y;
cov.m[0][2] += v.x * v.z;
cov.m[1][0] += v.y * v.x;
cov.m[1][1] += v.y * v.y;
cov.m[1][2] += v.y * v.z;
cov.m[2][0] += v.z * v.x;
cov.m[2][1] += v.z * v.y;
cov.m[2][2] += v.z * v.z;
}
// 计算特征值和特征向量
float eigenvalues[3];
Vector3 eigenvectors[3];
cov.Diagonalize(eigenvalues, eigenvectors);
// 将特征向量作为OBB的轴
obb.axis[0] = eigenvectors[0];
obb.axis[1] = eigenvectors[1];
obb.axis[2] = eigenvectors[2];
// 计算OBB的半径
obb.extent.x = sqrt(eigenvalues[0]);
obb.extent.y = sqrt(eigenvalues[1]);
obb.extent.z = sqrt(eigenvalues[2]);
return obb;
}
```
其中,`Matrix3`是一个表示3x3矩阵的类,`Diagonalize`函数用于计算矩阵的特征值和特征向量,具体实现可以参考以下代码:
```
class Matrix3
{
public:
float m[3][3];
Matrix3()
{
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
m[i][j] = 0;
}
}
}
void Diagonalize(float eigenvalues[3], Vector3 eigenvectors[3])
{
// Jacobi旋转法
Matrix3 a = *this;
Matrix3 d;
d.m[0][0] = 1;
d.m[1][1] = 1;
d.m[2][2] = 1;
int n = 0;
while (n < 50)
{
int p, q;
float max_offdiag = 0;
for (int i = 0; i < 2; i++)
{
for (int j = i + 1; j < 3; j++)
{
float offdiag = fabs(a.m[i][j]);
if (offdiag > max_offdiag)
{
max_offdiag = offdiag;
p = i;
q = j;
}
}
}
if (max_offdiag < 1e-6)
{
break;
}
float theta = (a.m[q][q] - a.m[p][p]) / (2 * a.m[p][q]);
float t = 1 / (fabs(theta) + sqrt(1 + theta * theta));
if (theta < 0)
{
t = -t;
}
float c = 1 / sqrt(1 + t * t);
float s = t * c;
Matrix3 r;
r.m[p][p] = c;
r.m[p][q] = -s;
r.m[q][p] = s;
r.m[q][q] = c;
a = r.Transpose() * a * r;
d = d * r;
n++;
}
// 将对角线元素作为特征值,列向量作为特征向量
eigenvalues[0] = a.m[0][0];
eigenvalues[1] = a.m[1][1];
eigenvalues[2] = a.m[2][2];
eigenvectors[0] = Vector3(a.m[0][0], a.m[1][0], a.m[2][0]);
eigenvectors[1] = Vector3(a.m[0][1], a.m[1][1], a.m[2][1]);
eigenvectors[2] = Vector3(a.m[0][2], a.m[1][2], a.m[2][2]);
}
Matrix3 Transpose() const
{
Matrix3 result;
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
result.m[j][i] = m[i][j];
}
}
return result;
}
};
```
最后,我们可以使用上述代码来计算OBB包围盒,例如:
```
// 定义一个三角面片的数组
std::vector<Vector3> vertices;
vertices.push_back(Vector3(-1, 0, 0));
vertices.push_back(Vector3(0, 1, 0));
vertices.push_back(Vector3(0, 0, 1));
// 计算OBB包围盒
OBB obb = CalculateOBB(vertices);
```
在计算出OBB包围盒后,我们可以根据需要进行旋转、平移和缩放,从而使其与物体完全契合。
阅读全文