求不定积分$$ \int{e^{2x}arctanx\sqrt{e^x-1}dx}$$
时间: 2023-06-26 16:07:37 浏览: 403
查表法求反三角函数.zip
我们可以通过分部积分法来求解这个不定积分。
令$$u = arctanx, \quad dv = e^{2x}\sqrt{e^x-1}dx$$
则$$du = \frac{1}{1+x^2}dx, \quad v = \int e^{2x}\sqrt{e^x-1}dx$$
对于$v$的积分,我们可以通过令$t=e^x$,则$$\begin{aligned} v &= \int e^{2x}\sqrt{e^x-1}dx \\ &= \int \sqrt{t-1}e^{2\ln t}dt \\ &= \frac{1}{2}\int \sqrt{t-1}t^2dt \\ &= \frac{1}{2}\int (t^{\frac{5}{2}}-t^{\frac{3}{2}})dt \\ &= \frac{1}{7}(e^{\frac{5}{2}x}(2e^x-5)+7\sqrt{e^x-1}) \end{aligned}$$
回到原式,我们有$$\begin{aligned} \int{e^{2x}arctanx\sqrt{e^x-1}dx} &= uv - \int vdu \\ &= arctanx \cdot \frac{1}{7}(e^{\frac{5}{2}x}(2e^x-5)+7\sqrt{e^x-1}) - \frac{1}{7}\int \frac{e^{2x}}{(1+x^2)\sqrt{e^x-1}}\cdot (e^{\frac{5}{2}x}(2e^x-5)+7\sqrt{e^x-1})dx \\ &= arctanx \cdot \frac{1}{7}(e^{\frac{5}{2}x}(2e^x-5)+7\sqrt{e^x-1}) - \frac{1}{7}\int \frac{e^{\frac{9}{2}x}+5e^{\frac{5}{2}x}-7e^x}{(1+x^2)\sqrt{e^x-1}}dx \end{aligned}$$
接下来,我们需要通过有理化的方法来求解最后一个积分。令$$t = \sqrt{e^x-1}, \quad e^x = t^2+1, \quad x = \ln(t^2+1)$$
则$$\begin{aligned} \int \frac{e^{\frac{9}{2}x}+5e^{\frac{5}{2}x}-7e^x}{(1+x^2)\sqrt{e^x-1}}dx &= \int \frac{(t^2+1)^{\frac{9}{2}}+5(t^2+1)^{\frac{5}{2}}-7(t^2+1)}{(t^2+1)^2t}dt \\ &= \int \frac{t^9+9t^8+36t^7+84t^6+141t^5+170t^4+141t^3+84t^2+36t+9}{t(t^2+1)^2}dt \\ &= 9\int \frac{1}{t}dt + 36\int \frac{t}{(t^2+1)^2}dt + 84\int \frac{1}{(t^2+1)^2}dt \\ & \quad +141\int\frac{t}{t^2+1}dt + 170\int \frac{1}{t^2+1}dt -7\int\frac{1}{t^2+1}dt \\ &= 9\ln|t| - 18\frac{t}{t^2+1} + 42\arctan t + \frac{141}{2}\ln(t^2+1) + 170\arctan t - 7\arctan t + C \\ &= 9\ln|e^x-1| - 18\frac{\sqrt{e^x-1}}{e^x} + 49\arctan\sqrt{e^x-1} + \frac{141}{2}\ln(e^x) - 7\arctan\sqrt{e^x-1} + C \end{aligned}$$
最终的答案为$$\int{e^{2x}arctanx\sqrt{e^x-1}dx} = arctanx \cdot \frac{1}{7}(e^{\frac{5}{2}x}(2e^x-5)+7\sqrt{e^x-1}) - \frac{1}{7}\left(9\ln|e^x-1| - 18\frac{\sqrt{e^x-1}}{e^x} + 49\arctan\sqrt{e^x-1} + \frac{141}{2}\ln(e^x) - 7\arctan\sqrt{e^x-1}\right) + C$$
阅读全文