已知x=-1100,y=-1000,用补码双符号位法求x+y,并判断是否溢出
时间: 2023-10-10 11:14:03 浏览: 715
首先将x和y按照补码双符号位法表示出来:
x = -1100的二进制表示为:1 1001 1100(最高位为符号位,1表示负数)
y = -1000的二进制表示为:1 1110 1000(最高位为符号位,1表示负数)
接下来进行加法运算:
```
1101 0011 (x的补码表示)
+ 1111 0111 (y的补码表示)
---------
1 1100 1010 (结果的补码表示)
```
最后将结果转换为十进制:
1 1100 1010 的原码表示为 -0100,即十进制的 -4。
由于x和y都是负数,所以结果也是负数。符号位为1,表示负数,这是正确的。
接下来判断是否溢出。在补码双符号位法中,当进行加减运算时,如果两个数的符号位相同,且结果的符号位与它们不同,就表示发生了溢出。在这个例子中,x和y的符号位都为1,结果的符号位为0,所以没有发生溢出。
相关问题
2. 计算题 已知X=54,Y=-85,机器字长为8位,试用二进制补码加减法分别求X+Y和X-Y,并采用双符号位法判断结果是否溢出。
首先,我们需要将十进制数X = 54和Y = -85转换成8位二进制补码表示。由于54是一个正数,它的二进制补码就是其原码;而-85是一个负数,因为它是两个的补码表示。
- X (54) 的二进制补码是:000001010100 (从右到左)
- Y (-85) 需先取反再加一:111110111111 (取反后) + 1 = 100001000000
然后我们来进行加减运算:
**加法(X + Y):**
1. 把两个数拼接在一起(高位对齐)形成一个16位的二进制数:000001010100_100001000000
2. 进行加法运算,注意最高位(符号位)可能会有进位。
```
+---+---+
| 0 | 1 |
+---+---+ (低位)
| 0 | 0 |
+---+---+ (高位)
```
结果是:000001001100,这意味着结果为正,没有溢出。转换回8位,我们得到:00000100,即124。
**减法(X - Y):**
1. 同样把两个数拼接起来:000001010100_100001000000
2. 视Y为负数:000001010100 - 100001000000
```
----+---+
| 0 | 1 |
+---+---+ (低位)
| 0 | 1 |
+---+---+ (高位)
```
这里会有一个借位,结果是:111110111100,这意味着结果为负,表示溢出了。由于我们是在8位补码下操作,所以无法精确地表达-121(等于10000100在8位补码下的值),这表明存在溢出。
总结:
- X+Y的结果是124,无溢出,二进制补码表示为00000100。
- X-Y的结果是-121,存在溢出(实际是-121,但在8位补码中表示不了)。
已知x=-0.10111,y=-0.11000,用变形补码计算x+y,并判断结果是否溢出
在计算机中,负数通常使用补码(Two's complement)来表示。对于一个二进制数,变形补码(也称为求补码)的过程如下:
1. 写出数的绝对值的二进制表示。
2. 对绝对值的二进制表示按位取反(即0变1,1变0)。
3. 将取反后的结果加1。
现在我们先将x和y转换为变形补码形式:
x = -0.10111
y = -0.11000
为了方便计算,我们假设我们有足够位数的二进制位来表示这些数。首先,将它们转换为6位二进制数(因为我们将在最后进行6位的加法操作):
1. x的绝对值的二进制表示是0.10111,取反得到1.01000,加1得到1.01001。
2. y的绝对值的二进制表示是0.11000,取反得到1.00111,加1得到1.01000。
现在我们将这两个变形补码相加:
```
1.01001 (x的变形补码)
+ 1.01000 (y的变形补码)
-----------
10.10001 (相加结果)
```
在这里我们看到,由于我们使用的是6位二进制数,最高位产生了进位,这意味着结果溢出。在实际的计算机系统中,溢出通常意味着结果不可靠,因为超出系统所能表示的范围。
为了得到正确的结果,我们需要去掉溢出位,并得到最终的补码结果:
```
0.10001 (去掉溢出位后的结果)
```
这就是x+y的最终结果。由于最高位(符号位)是0,表示结果是一个正数。由于原问题中x和y都是负数,结果应该是正数,这意味着没有溢出,我们得到了正确的结果。
需要注意的是,在实际情况中,溢出检测通常由硬件或软件来完成,并且可能会有不同的处理溢出的方法。
阅读全文