用matlab计算差分方程y(n) = -0.7y(n-1)+ 0.45y(n-2)+0.6y(n-3)+0.8 x(n)-0.44x(n-1)+0.36x(n-2)+0.02x(n-3)所对应的系统函数DTFT
时间: 2023-12-26 15:05:15 浏览: 139
Sure, I'd be happy to help you with that! The system function for the given difference equation can be found by taking the z-transform of the difference equation:
Y(z) = -0.7Y(z)z^-1 + 0.45Y(z)z^-2 + 0.6Y(z)z^-3 + 0.8X(z) - 0.44X(z)z^-1 + 0.36X(z)z^-2 + 0.02X(z)z^-3
Simplifying and solving for Y(z)/X(z), we get:
H(z) = Y(z)/X(z) = (0.8 - 0.44z^-1 + 0.36z^-2 + 0.02z^-3) / (1 + 0.7z^-1 - 0.45z^-2 - 0.6z^-3)
To find the DTFT of H(z), we substitute z = e^(jw) and simplify:
H(e^(jw)) = (0.8 - 0.44e^(-jw) + 0.36e^(-2jw) + 0.02e^(-3jw)) / (1 + 0.7e^(-jw) - 0.45e^(-2jw) - 0.6e^(-3jw))
I hope this helps! Let me know if you have any other questions.
相关问题
(1)用MATLAB计算差分方程 y(n)+0.7y(n-1)-0.45y(n-2)-0.6y(n-3) =0.8x(n)-0.44x(n-1)+0.36x(n-2)+0.02x(n-3) 当输入序列为x(n)=δ(n)时的输出结果y(n),0≤ n≤40
在MATLAB中,你可以使用`ode45`函数来求解差分方程。该函数用于数值积分,特别适合处理微分和常微分方程。对于给定的线性非齐次差分方程,首先需要编写一个自定义函数描述方程,然后传递给`ode45`。
这里是一个简单的步骤:
1. 定义差分方程函数 `dydt.m` (假设输入为`t`, `y`, 和 `u`):
```matlab
function dy = dydt(t,y,u)
dy = [y(2); -0.7*y(1) + 0.45*y(2) + 0.6*y(3) - 0.8*u(1) + 0.44*u(2) - 0.36*u(3) + 0.02*u(4)];
end
```
2. 初始化时间向量 `tspan` 和状态向量 `y0`:
```matlab
tspan = 0:0.1:40;
y0 = zeros(1, 4); % 因为有四个状态变量 y(n), y(n-1), y(n-2), y(n-3)
```
3. 输入序列 `x(n)` 为单位脉冲序列,可以表示为 `u` 向量:
```matlab
u = dirac(tspan, 1); % 或者直接设置为 u = ones(size(tspan));
```
4. 使用 `ode45` 求解方程并得到输出序列 `y(n)`:
```matlab
[t, y] = ode45(@dydt, tspan, y0, u);
```
5. 现在,`y(:,1)` 将包含从 `n=0` 到 `n=40` 的输出序列 `y(n)`。
注意:由于实际运行这段代码需要MATLAB环境,如果你是在文本环境中,我会展示大致思路,但无法在这里直接生成结果。如果你想要查看具体的结果,建议你在MATLAB环境下运行上述代码。
编写MATLAB代码实现3个神经元的Hofield网络,设计2个稳定点(-1,1,-1)、(1,-1,-1),产生测试矢量(状态)实现联想记忆产生P=[-0.7 -0.5 -0.3 0.9 0.7 -0.3 0.4 0.2; 0.8 0.6 0.5 -0.9 -0.5 -0.2 -0.1 -0.2; -0.6 0.5 0.7 0.8 0.9 -0.5 0.6 -0.3]8组测试样本(矢量),利用建立的Hofield网络进行测试,并画出状态变化的轨迹产生P=[-0.7 -0.5 -0.3 0.9 0.7 -0.3 0.4 0.2; 0.8 0.6 0.5 -0.9 -0.5 -0.2 -0.1 -0.2; -0.6 0.5 0.7 0.8 0.9 -0.5 0.6 -0.3]8组测试样本(矢量),利用建立的Hofield网络进行测试,并画出状态变化的轨迹
以下是一个MATLAB代码示例,实现了3个神经元的Hofield网络,设计了2个稳定点(-1,1,-1)、(1,-1,-1),并能够通过测试矢量实现联想记忆,同时绘制了状态变化的轨迹。其中,测试样本P=[-0.7 -0.5 -0.3 0.9 0.7 -0.3 0.4 0.2; 0.8 0.6 0.5 -0.9 -0.5 -0.2 -0.1 -0.2; -0.6 0.5 0.7 0.8 0.9 -0.5 0.6 -0.3],共8组。代码注释中有详细的说明,请参考:
```matlab
% 初始化网络参数
w = rand(3,3); % 权重矩阵,采用随机数生成的方式初始化
theta = rand(1,3); % 阈值向量,采用随机数生成的方式初始化
% 训练网络,使用Hebbian学习规则
x1 = [-1 1 -1]; % 稳定点1
x2 = [1 -1 -1]; % 稳定点2
for i = 1:1000 % 迭代1000次
% 随机选择一个稳定点作为输入状态
if rand() < 0.5
x = x1;
else
x = x2;
end
% 计算网络的响应
y = sign(w * x' - theta);
% 更新权重矩阵
w = w + y' * x;
% 更新阈值向量
theta = theta + y;
end
% 测试网络,绘制状态变化轨迹
P = [-0.7 -0.5 -0.3 0.9 0.7 -0.3 0.4 0.2;
0.8 0.6 0.5 -0.9 -0.5 -0.2 -0.1 -0.2;
-0.6 0.5 0.7 0.8 0.9 -0.5 0.6 -0.3]; % 测试样本矩阵
figure; hold on; % 绘制图像
for i = 1:size(P,2) % 对每个测试样本进行测试
x_test = P(:,i)'; % 测试矢量
y_test = sign(w * x_test' - theta); % 计算网络的响应
% 绘制状态变化的轨迹
x_traj = [x_test(1)]; y_traj = [x_test(2)]; z_traj = [x_test(3)];
for j = 1:100 % 迭代100次,绘制状态变化的轨迹
y_traj(end+1) = sign(w * [x_traj(end), y_traj(end), z_traj(end)]' - theta(2));
x_traj(end+1) = sign(w * [x_traj(end), y_traj(end), z_traj(end)]' - theta(1));
z_traj(end+1) = sign(w * [x_traj(end), y_traj(end), z_traj(end)]' - theta(3));
end
plot3(x_traj, y_traj, z_traj); % 绘制状态变化轨迹
% 输出测试结果
disp(['测试矢量', num2str(i), ':', num2str(x_test)]);
if isequal(y_test, x1')
disp(['网络的响应', num2str(i), ':稳定点1']);
elseif isequal(y_test, x2')
disp(['网络的响应', num2str(i), ':稳定点2']);
else
disp(['网络的响应', num2str(i), ':未知状态']);
end
end
xlabel('x'); ylabel('y'); zlabel('z'); % 绘制坐标轴
title('状态变化轨迹'); % 绘制标题
```
需要注意的是,这个代码示例仅作为参考,实际应用中可能需要根据具体情况进行调整和优化。同时,绘制出的状态变化轨迹可能会比较混乱,需要仔细观察。
阅读全文