设X1,X2,...,Xn是来自总体X~N(0,1)的一个样本,设Y=a(X1+X2+X3)^2服从X^2分布,则常数a等于多少
时间: 2023-06-14 10:07:09 浏览: 460
根据题意,$Y=a(X_1+X_2+X_3)^2 \sim \chi^2(1)$,且$X_i \sim N(0,1)$独立同分布。所以,$X_1+X_2+X_3 \sim N(0,3)$。因此,$(X_1+X_2+X_3)^2 \sim \chi^2(1,3)$,即自由度为3的卡方分布。
由于$\chi^2(1)$可以表示为标准正态分布的平方,即$\chi^2(1)=N^2(0,1)$,所以$\chi^2(1,3)=(N(0,1))^2+(N(0,1))^2+(N(0,1))^2 \sim \chi^2(3)$。因此,$a=\frac{1}{3}$。
因此,$Y=\frac{1}{3}(X_1+X_2+X_3)^2 \sim \chi^2(1)$。
相关问题
设X=[x1,x2...xN]为来自总体N(μ,)的样本集,求μ的最大似然估计
根据样本集的定义,我们可以得到样本均值为:
$$\overline{x}=\frac{\sum_{i=1}^{N} x_i}{N}$$
总体均值为μ,根据最大似然估计的原理,我们要找到一个μ,使得样本集X出现的概率最大,即似然函数最大。
样本集X的似然函数为:
$$L(\mu)=\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi \sigma^2}}exp(-\frac{(x_i-\mu)^2}{2\sigma^2})$$
对似然函数求导,令导数为0,可以得到似然函数的最大值点:
$$\frac{dL(\mu)}{d\mu}=\frac{1}{\sqrt{2\pi \sigma^2}}\sum_{i=1}^{N} (x_i-\mu)exp(-\frac{(x_i-\mu)^2}{2\sigma^2})=0$$
整理后得到:
$$\sum_{i=1}^{N} (x_i-\mu)exp(-\frac{(x_i-\mu)^2}{2\sigma^2})=0$$
这个方程很难直接求解,一般需要使用数值方法来求解。但是根据中心极限定理,当N充分大时,样本均值的分布趋近于正态分布,因此样本均值的最大似然估计为:
$$\hat{\mu}=\overline{x}$$
即样本均值为总体均值的最大似然估计。
设X1,X2,···,Xn是来自总体X∼U[0,θ]的一个简单随机样本, 记Y=���{X1,X2,···,Xn}。证明: P � α 1 n<Y θ⩽1 � =1−α 并利用这个结论给出θ的1−α水平置信区间估计。
首先,我们可以将问题转化为求解Y的概率分布函数。由于样本来自总体X∼U[0,θ],所以每个样本的概率密度函数为f(x)=1/θ,其中0<=x<=θ。因为样本是简单随机样本,所以每个样本都是独立的,所以Y的概率密度函数为:
f(y)=n(1/θ)^n*y^(n-1)
要求P(α/2<Yθ<1-α/2),即求Yθ的置信区间。根据题意,我们需要找到两个常数L和U,使得P(Yθ>L)=α/2和P(Yθ<U)=1-α/2。
对于P(Yθ>L)=α/2,有:
∫L^θn(1/θ)^n*y^(n-1)dy=α/2
解得L=Y(1-α/2)。
同理,对于P(Yθ<U)=1-α/2,有:
∫θ^Un(1/θ)^n*y^(n-1)dy=α/2
解得U=Y(α/2)。
因此,θ的1-α水平置信区间为(Y(1-α/2), Y(α/2)),证毕。
阅读全文