用matlab求z=(1+xy)^y的偏导
时间: 2024-03-14 18:44:07 浏览: 73
MATLAB求导
在 MATLAB 中,可以使用符号计算工具箱来求解偏导数。具体操作如下:
1. 定义变量和函数:
```matlab
syms x y;
z = (1+x*y)^y;
```
2. 求偏导数:
```matlab
diff(z, x) % 求对 x 的偏导数
diff(z, y) % 求对 y 的偏导数
```
运行结果为:
```
ans = y^2*(x*y + 1)^(y - 1)
ans = (x*y + 1)^y*(log(x*y + 1) + x*y/(x*y + 1))
```
因此,$z=(1+xy)^y$ 的偏导数为 $\frac{\partial z}{\partial x}=y^2(1+xy)^{y-1}$,$\frac{\partial z}{\partial y}=(1+xy)^y \cdot \left[\ln(1+xy)+y\cdot\frac{x}{1+xy}\right]$。
阅读全文