osg如何将一个不规则的几何图元生成一张图片

时间: 2024-02-26 22:59:15 浏览: 33
生成一张不规则几何图元的图像需要使用到OpenSceneGraph(OSG)库中的Geometry类和StateSet类。以下是一个简单的步骤: 1. 创建一个osg::Geometry对象,并添加几何图元数据。 2. 创建一个osg::Geode对象,并将osg::Geometry对象添加到其中。 3. 创建一个osg::StateSet对象,并设置渲染状态。 4. 将osg::StateSet对象设置为osg::Geode对象的状态集。 5. 创建一个osg::Group对象,并将osg::Geode对象添加为其子节点。 6. 创建一个osgViewer::Viewer对象,并将osg::Group对象设置为场景数据。 7. 使用osgDB::writeImageFile函数将场景渲染到图像文件中。 以下是一个简单的示例代码,演示如何使用OSG库中的Geometry类和StateSet类生成一张图像: ```cpp #include <osg/Geometry> #include <osg/Geode> #include <osg/Group> #include <osgViewer/Viewer> #include <osgDB/WriteFile> #include <osg/StateSet> #include <osg/BlendFunc> int main() { // 创建一个不规则几何图元 osg::ref_ptr<osg::Geometry> irregularGeometry = new osg::Geometry(); // 设置几何图元顶点数据 osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array(); vertices->push_back(osg::Vec3(-1.0f, 0.0f, 0.0f)); vertices->push_back(osg::Vec3(0.0f, 1.0f, 0.0f)); vertices->push_back(osg::Vec3(1.0f, 0.0f, 0.0f)); vertices->push_back(osg::Vec3(0.0f, -1.0f, 0.0f)); irregularGeometry->setVertexArray(vertices.get()); // 设置几何图元颜色数据 osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array(); colors->push_back(osg::Vec4(1.0f, 0.0f, 0.0f, 1.0f)); colors->push_back(osg::Vec4(0.0f, 1.0f, 0.0f, 1.0f)); colors->push_back(osg::Vec4(0.0f, 0.0f, 1.0f, 1.0f)); colors->push_back(osg::Vec4(1.0f, 1.0f, 0.0f, 1.0f)); irregularGeometry->setColorArray(colors.get()); irregularGeometry->setColorBinding(osg::Geometry::BIND_PER_VERTEX); // 设置几何图元绘制模式 osg::ref_ptr<osg::DrawElementsUInt> irregularPrimitive = new osg::DrawElementsUInt(osg::PrimitiveSet::QUADS, 0); irregularPrimitive->push_back(0); irregularPrimitive->push_back(1); irregularPrimitive->push_back(2); irregularPrimitive->push_back(3); irregularGeometry->addPrimitiveSet(irregularPrimitive.get()); // 创建一个osg::Geode对象,并将osg::Geometry对象添加到其中 osg::ref_ptr<osg::Geode> geode = new osg::Geode(); geode->addDrawable(irregularGeometry.get()); // 创建一个osg::StateSet对象,并设置渲染状态 osg::ref_ptr<osg::StateSet> stateSet = new osg::StateSet(); stateSet->setMode(GL_BLEND, osg::StateAttribute::ON); stateSet->setRenderingHint(osg::StateSet::TRANSPARENT_BIN); osg::ref_ptr<osg::BlendFunc> blendFunc = new osg::BlendFunc(); blendFunc->setFunction(osg::BlendFunc::SRC_ALPHA, osg::BlendFunc::ONE_MINUS_SRC_ALPHA); stateSet->setAttributeAndModes(blendFunc.get(), osg::StateAttribute::ON); // 将osg::StateSet对象设置为osg::Geode对象的状态集 geode->setStateSet(stateSet.get()); // 创建一个osg::Group对象,并将osg::Geode对象添加为其子节点 osg::ref_ptr<osg::Group> root = new osg::Group(); root->addChild(geode.get()); // 创建一个osgViewer::Viewer对象,并将osg::Group对象设置为场景数据 osg::ref_ptr<osgViewer::Viewer> viewer = new osgViewer::Viewer(); viewer->setSceneData(root.get()); // 渲染场景,并将场景渲染到图像文件中 viewer->frame(); osgDB::writeImageFile(*(viewer->getCamera()->captureRenderToImage()), "output.png", osgDB::Registry::instance()->getWriteFileOptions()); return 0; } ``` 运行代码后,将在程序所在目录下生成名为“output.png”的图像文件,其中包含了一个不规则几何图元。在示例代码中,使用osg::BlendFunc设置了几何图元的渲染状态,使其支持透明度。

相关推荐

最新推荐

recommend-type

osg空间扇形绘制源码.docx

该函数首先创建了一个osg::Geode对象,然后创建了一个osg::Geometry对象,并设置了顶点、颜色和法向量。最后,该函数返回了创建的图元。 五、MakeSectorVer函数分析 MakeSectorVer函数是该资源的另一个重要函数,...
recommend-type

osg3.6.3和osgearth3.1的编译全过程.docx

首先,从官方网站下载3rdParty_64,这是一个包含osg编译所需的所有依赖的完整包,特别是对于64位系统。下载链接是:https://download.osgvisual.org/3rdParty_VS2017_v141_x64_V11_full.7z。此外,从GitHub获取osg源...
recommend-type

osg中支持的立体视觉显示方式及效果图.docx

osg支持几种立体显示,包括左右、上下视差,红蓝色差等立体显示方式。文档测试了这几种方式的显示效果。希望对用OSG做VR的朋友有帮助。
recommend-type

osgEarth用户手册.pdf

osgEarth是一个跨平台的库,主要用于构建地理信息系统应用。本文将详细阐述osgEarth的安装、依赖库、编译以及如何建立地图。 1. **OSGEARTH 安装** - **获取源码**:可以通过三种方式获取源码,包括使用Git(推荐...
recommend-type

osg完整配置过程(vs2010,win7,win10)

OpenSceneGraph(OSG)是一个开源的3D图形库,它提供了高级图形功能,包括场景管理、几何处理、渲染优化以及动画和交互支持。在Windows系统上,尤其是使用Visual Studio 2010作为开发环境时,编译OSG需要遵循一系列...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。