pcl::search::KdTree<PointT>::Ptr cluster_tree(new pcl::search::KdTree<PointT>); cluster_tree->setInputCloud(non_ground_cloud); std::vector<pcl::PointIndices> cluster_indices; pcl::EuclideanClusterExtraction<PointT> ec; ec.setClusterTolerance(0.2); ec.setMinClusterSize(100); ec.setMaxClusterSize(10000); ec.setSearchMethod(cluster_tree); ec.setInputCloud(non_ground_cloud); ec.extract(cluster_indices);

时间: 2023-06-17 14:02:17 浏览: 212
这段代码是基于点云数据进行聚类分割,使用了欧几里得聚类算法(Euclidean Cluster Extraction)。具体来说,它将输入的点云分成多个聚类,其中每个聚类都代表着一组相邻的点。这个算法的主要思想是首先对点云进行空间分割,然后在每个空间分割中进行聚类。 这段代码首先创建了一个 KdTree 对象,将非地面点云输入到 KdTree 中,然后设置了聚类的一些参数,包括聚类的距离容差(cluster tolerance)、最小聚类大小(min cluster size)和最大聚类大小(max cluster size)。接着,使用 KdTree 进行空间搜索,将搜索结果输入到欧几里得聚类算法中,从而得到一系列聚类的索引。 在这段代码中,聚类容差(cluster tolerance)是 0.2,表示距离小于 0.2 的点将被视为同一聚类。最小聚类大小为 100,最大聚类大小为 10000,这意味着聚类中的点数必须在 100 到 10000 之间。搜索方法使用了 KdTree,它可以快速地找到离某个点最近的一组点。最后,extract() 方法将返回所有聚类的索引,可以在后续的代码中使用这些索引来操作聚类。
相关问题

如何理解后面的代码?为什么要使用template,还有using的方式等?namespace pcl { // Forward declarations template <typename T> class PointRepresentation; /** \brief KdTreeFLANN is a generic type of 3D spatial locator using kD-tree structures. The class is making use of * the FLANN (Fast Library for Approximate Nearest Neighbor) project by Marius Muja and David Lowe. * * \author Radu B. Rusu, Marius Muja * \ingroup kdtree */ template <typename PointT, typename Dist = ::flann::L2_Simple<float> > class KdTreeFLANN : public pcl::KdTree<PointT> { public: using KdTree<PointT>::input_; using KdTree<PointT>::indices_; using KdTree<PointT>::epsilon_; using KdTree<PointT>::sorted_; using KdTree<PointT>::point_representation_; using KdTree<PointT>::nearestKSearch; using KdTree<PointT>::radiusSearch; using PointCloud = typename KdTree<PointT>::PointCloud; //相关继承 using PointCloudConstPtr = typename KdTree<PointT>::PointCloudConstPtr; using IndicesPtr = shared_ptr<std::vector<int> >; using IndicesConstPtr = shared_ptr<const std::vector<int> >; using FLANNIndex = ::flann::Index<Dist>; // Boost shared pointers using Ptr = shared_ptr<KdTreeFLANN<PointT, Dist> >; using ConstPtr = shared_ptr<const KdTreeFLANN<PointT, Dist> >;

这段代码定义了一个名为KdTreeFLANN的类模板,用于创建3D空间中的kD-tree结构。它使用了FLANN库(Fast Library for Approximate Nearest Neighbor,快速最近邻库)来实现。通过继承pcl::KdTree<PointT>,KdTreeFLANN类提供了最近邻搜索和半径搜索的功能。 关于模板的使用,使用类模板的主要原因是可以定义一个通用的类,而不是为每种可能类型都定义一个不同的类。这里使用了两个模板参数:PointT和Dist,分别表示点类型和距离度量类型。这样可以在实例化KdTreeFLANN类时指定这些类型,使其适用于不同类型的点和不同的距离度量方法。 在该类中,使用了using关键字来引入pcl::KdTree<PointT>中的成员。例如,using KdTree<PointT>::nearestKSearch引入了父类中的nearestKSearch函数,使其可以在子类中使用。 另外,这段代码还使用了C++11中的typedef别名,例如using PointCloudConstPtr = typename KdTree<PointT>::PointCloudConstPtr;,用于定义类型别名来简化代码中的类型声明。 最后,该类使用了FLANN库中的::flann::Index<Dist>作为FLANNIndex的类型别名。 FLANN库提供了一些数据结构和算法,包括建立k-d tree,最近邻搜索等。

需要将骨架图中的节点分为叶尖、内部节点和交叉节点。可以使用PCL库中的pcl::GreedyProjectionTriangulation类进行点云分割,然后根据骨架图中节点的坐标和连接关系,将节点分类。接下来,找到最高的交叉节点,并将其标记为"植物轮廓"。可以使用PCL库中的pcl::getMaxDistance()函数找到点云中离点最远的点,然后根据该点和骨架图中的节点坐标进行匹配,找到最高的交叉节点。然后,需要提取出低于轮廓的点作为茎的一部分。可以使用PCL库中的pcl::P assThrough类进行点云滤波,将高于轮廓的点过滤掉。接着,需要从数据中提取出茎的内点,并将骨架图中的一度节点重新连接。可以使用PCL库中的pcl::ExtractIndices类进行点云提取,然后根据提取出的茎的内点重新连接骨架图中的一度节点。最后,将骨架图分割成多个部分,每个部分都以叶尖为起点,以交叉节点为终点。如果部分的一个端点是茎的一部分,则将其标记为叶子。可以使用PCL库中的pcl::EuclideanClusterExtraction类进行点云聚类,然后根据聚类结果和骨架图中的连接关系进行分割和标记。如何具体操作代码

以下是一个骨架图分割的代码示例,其中使用了PCL库中的一些方法: ``` #include <pcl/point_types.h> #include <pcl/io/pcd_io.h> #include <pcl/filters/passthrough.h> #include <pcl/segmentation/extract_clusters.h> #include <pcl/features/normal_3d.h> #include <pcl/surface/gp3.h> #include <pcl/visualization/pcl_visualizer.h> #include <iostream> #include <vector> typedef pcl::PointXYZ PointT; typedef pcl::PointCloud<PointT> PointCloudT; int main(int argc, char** argv) { PointCloudT::Ptr cloud(new PointCloudT); pcl::io::loadPCDFile("input_cloud.pcd", *cloud); // 使用PCL库中的pcl::GreedyProjectionTriangulation类进行点云分割 pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals(new pcl::PointCloud<pcl::PointNormal>); pcl::NormalEstimation<PointT, pcl::PointNormal> ne; ne.setInputCloud(cloud); pcl::search::KdTree<PointT>::Ptr tree(new pcl::search::KdTree<PointT>()); ne.setSearchMethod(tree); pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>); ne.setRadiusSearch(0.03); ne.compute(*cloud_normals); pcl::concatenateFields(*cloud, *cloud_normals, *cloud_with_normals); pcl::search::KdTree<pcl::PointNormal>::Ptr tree2(new pcl::search::KdTree<pcl::PointNormal>); tree2->setInputCloud(cloud_with_normals); pcl::GreedyProjectionTriangulation<pcl::PointNormal> gp3; pcl::PolygonMesh triangles; gp3.setSearchRadius(0.025); gp3.setMu(2.5); gp3.setMaximumNearestNeighbors(100); gp3.setMaximumSurfaceAngle(M_PI / 4); // 45 degrees gp3.setMinimumAngle(M_PI / 18); // 10 degrees gp3.setMaximumAngle(2 * M_PI / 3); // 120 degrees gp3.setNormalConsistency(false); gp3.setInputCloud(cloud_with_normals); gp3.setSearchMethod(tree2); gp3.reconstruct(triangles); // 将骨架图中的节点分为叶尖、内部节点和交叉节点 std::vector<pcl::PointXYZ> leaf_points, internal_points, cross_points; // ... // 找到最高的交叉节点,并将其标记为"植物轮廓" pcl::PointXYZ contour_point; // ... // 提取出低于轮廓的点作为茎的一部分 pcl::PointCloud<PointT>::Ptr stem_cloud(new pcl::PointCloud<PointT>); pcl::PassThrough<PointT> pass; pass.setInputCloud(cloud); pass.setFilterFieldName("z"); pass.setFilterLimits(contour_point.z, std::numeric_limits<float>::max()); pass.filter(*stem_cloud); // 从数据中提取出茎的内点,并将骨架图中的一度节点重新连接 pcl::PointCloud<PointT>::Ptr stem_internal_cloud(new pcl::PointCloud<PointT>); // ... // 将骨架图分割成多个部分 std::vector<std::vector<pcl::PointXYZ>> segments; // ... return 0; } ``` 需要根据具体应用场景进行参数调整和代码实现。
阅读全文

相关推荐

最新推荐

recommend-type

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页
recommend-type

PyMySQL-1.1.0rc1.tar.gz

PyMySQL-1.1.0rc1.tar.gz
recommend-type

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip
recommend-type

docker构建php开发环境

docker构建php开发环境
recommend-type

VB程序实例59_系统信息_显示分辨率.zip

VB程序实例,可供参考学习使用,希望对你有所帮助
recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。