MATLAB编程,0.618法则求minf(x)=X^3-2X+1
时间: 2024-05-01 10:16:34 浏览: 189
利用matlab软件,编0.618法求函数极小值点
5星 · 资源好评率100%
首先,需要编写一个函数,计算给定值x的函数值minf(x)=X^3-2X。
```matlab
function y = minf(x)
y = x^3 - 2*x;
end
```
接下来,可以编写一个脚本来实现0.618法则。
```matlab
a = 0; % 区间左端点
b = 2; % 区间右端点
epsilon = 1e-6; % 精度
while b-a > epsilon
x1 = a + 0.382*(b-a); % 分割点1
x2 = a + 0.618*(b-a); % 分割点2
if minf(x1) < minf(x2)
b = x2;
else
a = x1;
end
end
fprintf('minf(x)的最小值为%f,取得最小值的x为%f\n', minf((a+b)/2), (a+b)/2);
```
在该脚本中,首先定义了区间左右端点和精度。然后,通过while循环,不断进行0.618法则的迭代,直到区间长度小于给定的精度。每次迭代中,计算出两个分割点x1和x2,并比较它们的函数值,将区间缩小至函数值小的那个分割点所在的区间。最终,输出minf(x)的最小值和取得最小值的x。
阅读全文