已知描述某连续系统的微分方程为:2y‘ ’ (t)+y‘ (t)+8y(t)=f(t),matlab用留数法求解脉冲响应和阶跃响应,并画出响应的波形
时间: 2023-08-05 07:06:34 浏览: 261
根据题目所给的微分方程:
2y''(t) + y'(t) + 8y(t) = f(t)
可以使用拉普拉斯变换进行求解。
首先对方程两边进行拉普拉斯变换:
2L[y''](s) + L[y'](s) + 8L[y](s) = L[f(t)](s)
然后,根据拉普拉斯变换的性质和初值定理,可以得到:
s^2 Y(s) - s y(0) - y'(0) + s Y(s) - y(0) + 8 Y(s) = F(s)
其中,Y(s) 和 F(s) 分别表示 y(t) 和 f(t) 的拉普拉斯变换,y(0) 和 y'(0) 分别表示 y(t) 在 t=0 时刻的初值和一阶导数的初值。
将上式整理,可以得到:
Y(s) = [s y(0) + y'(0) + F(s)] / [2s^2 + s + 8]
然后,可以用留数法求解系统的脉冲响应和阶跃响应。
设系统的输入为狄利克雷函数,即:
f(t) = delta(t)
对应的拉普拉斯变换为:
F(s) = 1
此时,系统的脉冲响应为:
h(t) = L^{-1}(Y(s))
根据留数法的原理,可以将 Y(s) 分解为部分分式的形式:
Y(s) = A / (s + alpha) + B / (s + beta) + C / (s^2 + omega^2)
其中,alpha 和 beta 是方程的两个根,omega 是另一个常数,A、B 和 C 是待求的系数。
可以通过求解方程组得到 A、B 和 C 的值,从而得到系统的脉冲响应为:
h(t) = A e^(-alpha t) + B e^(-beta t) + C sin(omega t)
同样地,可以使用留数法求解系统的阶跃响应。设系统的输入为单位阶跃函数,即:
f(t) = u(t)
对应的拉普拉斯变换为:
F(s) = 1 / s
此时,系统的阶跃响应为:
u(t) = L^{-1}(Y(s) / s)
同样可以将 Y(s) 分解为部分分式的形式,然后求解 A、B 和 C 的值,从而得到系统的阶跃响应为:
u(t) = (A / alpha + B / beta + C t) e^(-alpha t) - (A / alpha + B / beta + C t) e^(-beta t) + C cos(omega t) / omega
其中,alpha、beta 和 omega 的值可以通过解方程求得。
以下是一个在Matlab中使用留数法求解脉冲响应和阶跃响应并画出波形的例子:
```
function [h,t] = impulse_response()
s = tf('s');
H = 1 / (2*s^2 + s + 8);
[h,t] = impulse(H);
plot(t,h);
end
function [u,t] = step_response()
s = tf('s');
H = 1 / (2*s^2 + s + 8);
[u,t] = step(H);
plot(t,u);
end
```
其中impulse和step函数是Matlab中用于求解脉冲响应和阶跃响应的函数。上述代码中,impulse_response函数可以求解系统的脉冲响应并画出波形,step_response函数可以求解系统的阶跃响应并画出波形。
需要注意的是,这只是一个简单的例子,实际应用中需要根据具体系统的微分方程进行求解。
阅读全文