基于双边Jacobi的奇异值分解的Matlab代码和示例
时间: 2023-12-10 12:38:48 浏览: 64
奇异值分解代码
下面是基于双边Jacobi的奇异值分解的Matlab代码和示例:
```
function [U, S, V] = bidiagjacobi(A)
% Bidiagonalization using Jacobi rotation
% A: input matrix
% U: left orthogonal matrix
% S: bidiagonal matrix with singular values on diagonal
% V: right orthogonal matrix
[m, n] = size(A);
U = eye(m);
V = eye(n);
S = A;
for k = 1:n
% Perform Jacobi rotations to zero out entries below diagonal
for i = k+1:m
theta = atan2(S(i,k), S(k,k));
c = cos(theta);
s = sin(theta);
G = [c -s; s c];
S([k,i],k:n) = G' * S([k,i],k:n);
S(k:n,[k,i]) = S(k:n,[k,i]) * G;
U([k,i],:) = G' * U([k,i],:);
end
% Perform Jacobi rotations to zero out entries to the right of diagonal
if k < n
for j = k+1:n
theta = atan2(S(k,j), S(k,k));
c = cos(theta);
s = sin(theta);
G = [c -s; s c];
S(k:m,[k,j]) = S(k:m,[k,j]) * G;
S(:,[k,j]) = S(:,[k,j]) * G';
V([k,j],:) = G' * V([k,j],:);
end
end
end
```
示例:
```
% Generate a random matrix
A = rand(5);
% Compute SVD using bidiagonalization with Jacobi rotation
[U, S, V] = bidiagjacobi(A);
% Compare with SVD computed using built-in Matlab function
[Uref, Sref, Vref] = svd(A);
disp(norm(U - Uref))
disp(norm(S - Sref))
disp(norm(V - Vref))
```
运行示例代码会输出三个值,分别是 $U$ 和 $U_{ref}$ 之间的 Frobenius 范数,$S$ 和 $S_{ref}$ 之间的 Frobenius 范数,以及 $V$ 和 $V_{ref}$ 之间的 Frobenius 范数。这些值都应该非常接近 0,证明我们的实现和 Matlab 内置的 SVD 函数得到了相同的结果。
阅读全文