双边Jacobi方法求解SVD的Matlab代码示例
时间: 2023-12-03 07:45:40 浏览: 113
Jacobi迭代法求解Ax=b方程组数值解MATLAB源代码
5星 · 资源好评率100%
以下是使用双边Jacobi方法求解SVD的Matlab代码示例:
```matlab
function [U,S,V] = svd_bi_jacobi(A)
% SVD using bidirectional Jacobi method
% A: input matrix
% U: left singular vectors
% S: singular values
% V: right singular vectors
% Initialization
[m,n] = size(A);
U = eye(m);
V = eye(n);
S = diag(A);
delta = 1e-10;
flag = true;
% Iteration
while flag
flag = false;
% Jacobi rotation on columns of A
for i = 1:n-1
for j = i+1:n
p = [S(i),S(j),A(:,i)'*A(:,j)];
[c,s,w] = jacobi(p);
if abs(s) < delta
continue;
end
flag = true;
S(i) = c*S(i) + s*S(j);
S(j) = c*S(j) - s*S(i);
A(:,i) = c*A(:,i) + s*A(:,j);
A(:,j) = c*A(:,j) - s*A(:,i);
V(:,[i,j]) = V(:,[i,j])*[c,s;-s,c];
end
end
% Jacobi rotation on rows of A
for i = 1:m-1
for j = i+1:m
p = [S(i),S(j),A(i,:)*A(j,:)'];
[c,s,w] = jacobi(p);
if abs(s) < delta
continue;
end
flag = true;
S(i) = c*S(i) + s*S(j);
S(j) = c*S(j) - s*S(i);
A(i,:) = c*A(i,:) + s*A(j,:);
A(j,:) = c*A(j,:) - s*A(i,:);
U(:,[i,j]) = U(:,[i,j])*[c,s;-s,c];
end
end
end
% Sort singular values in decreasing order
[S,idx] = sort(S,'descend');
U = U(:,idx);
V = V(:,idx);
% Ensure positive singular values
signs = sign(diag(U'*A*V));
U = U*diag(signs);
V = V*diag(signs);
S = abs(S);
end
function [c,s,w] = jacobi(p)
% Jacobi rotation for 2x2 symmetric matrix
% p: vector [a,b,c] representing matrix [a,c;c,b]
% c: cos(theta), s: sin(theta), w: cot(2*theta)
if p(2) == 0
c = 1;
s = 0;
w = 0;
else
w = (p(1)-p(2))/(2*p(3));
t = sign(w)/(abs(w) + sqrt(1+w^2));
c = 1/sqrt(1+t^2);
s = c*t;
end
end
```
这个函数接受一个矩阵作为输入,然后使用双边Jacobi方法来计算其SVD分解。返回的结果是左奇异向量矩阵U、奇异值向量S和右奇异向量矩阵V。
阅读全文