使用双边Jacobi方法求解SVD的Matlab代码示例
时间: 2023-12-03 08:45:36 浏览: 81
SVD算法的MATLAB代码
5星 · 资源好评率100%
以下是使用双边Jacobi方法求解SVD的Matlab代码示例:
```matlab
function [U,S,V] = SVD(A)
% SVD using Jacobi method
% Initialize U, S and V
[m,n] = size(A);
U = eye(m);
V = eye(n);
S = A;
% Set tolerance and maximum number of iterations
tol = 1e-8;
max_iter = 1000;
% Initialize variables
iter = 0;
converged = false;
while ~converged && iter < max_iter
% Increment iteration count
iter = iter + 1;
% Compute SVD of S
[Q1,R1] = qr(S);
[Q2,R2] = qr(R1');
S = R2';
U = U*Q1;
V = V*Q2;
% Check if diagonal elements of S are close to singular values
converged = true;
for i = 1:min(m,n)
if abs(S(i,i) - S(i+1,i+1)) > tol
converged = false;
end
end
end
% Extract singular values from diagonal of S
S = diag(S);
end
```
其中,输入参数A是需要进行SVD的矩阵。输出参数U、S和V分别是其左奇异矩阵、奇异值和右奇异矩阵。在代码中,我们使用QR分解来计算SVD,并通过双边Jacobi方法对其进行迭代求解。迭代的过程中,我们检查对角线元素是否趋近于奇异值,并设置了一个收敛阈值tol和最大迭代次数max_iter。
阅读全文