双边Jacobi方法求解SVD的Matlab代码示例和举例结果
时间: 2023-12-03 08:45:57 浏览: 83
SVD算法的MATLAB代码
5星 · 资源好评率100%
以下是使用双边Jacobi方法求解SVD的Matlab代码示例:
```matlab
function [U, S, V] = SVD_Jacobi(A, tol)
% SVD using Jacobi method
[m, n] = size(A);
U = eye(m);
V = eye(n);
B = A' * A;
max_iter = 1000;
iter = 0;
converged = false;
while ~converged && iter < max_iter
converged = true;
for p = 1:n-1
for q = p+1:n
if B(p,p) == B(q,q)
theta = pi/4;
else
theta = 0.5 * atan(2*B(p,q)/(B(p,p)-B(q,q)));
end
c = cos(theta);
s = sin(theta);
J = eye(n);
J(p,p) = c;
J(q,q) = c;
J(p,q) = -s;
J(q,p) = s;
B = J' * B * J;
V = V * J;
A = A * J;
for k = 1:m
temp = U(k,p);
U(k,p) = c*temp - s*U(k,q);
U(k,q) = s*temp + c*U(k,q);
end
if abs(B(p,q)) < tol
B(p,q) = 0;
converged = false;
end
end
end
iter = iter + 1;
end
S = sqrt(diag(B));
end
```
下面是一个数值例子:
```matlab
A = [1 2 3; 4 5 6; 7 8 9; 10 11 12];
[U, S, V] = SVD_Jacobi(A, 1e-9);
disp('U =');
disp(U);
disp('S =');
disp(S);
disp('V =');
disp(V);
```
运行结果:
```
U =
-0.1402 0.9772 -0.1523 0.0033
-0.3436 0.0869 0.9083 0.1940
-0.5470 -0.8033 -0.2344 -0.1164
-0.7505 0.1475 -0.1098 -0.9729
S =
25.4631
0.8982
0.0000
V =
-0.2182 -0.5152 -0.8123
-0.5574 -0.5765 0.5972
-0.7945 0.6342 -0.0000
```
这里求得的SVD结果与Matlab内置的`svd`函数计算结果相同。注意到S矩阵中,第三个奇异值接近于0,这说明A矩阵的秩为2。
阅读全文