双边 Jacobi 方法求解svd的代码
时间: 2023-12-03 14:45:35 浏览: 51
求特征值的 Jacobi方法 (2011年)
以下是使用双边Jacobi方法求解SVD的Python代码示例:
```python
import numpy as np
def svd_bidiagonalization(A):
"""双边Jacobi方法求解SVD"""
m, n = A.shape
U = np.eye(m)
V = np.eye(n)
B = A.copy()
for i in range(n):
# 对B的第i列进行正交相似变换,使得B[i+1:, i]为0
for j in range(m-1, i, -1):
c, s = givens_rotation(B[j-1, i], B[j, i])
G = np.eye(m)
G[j-1:j+1, j-1:j+1] = np.array([[c, s], [-s, c]])
B = np.dot(G.T, np.dot(B, G))
U = np.dot(U, G)
# 对B的第i+1行进行正交相似变换,使得B[i+1, i+2:]为0
if i < n-2:
for j in range(i+2, n):
c, s = givens_rotation(B[i+1, j-1], B[i+1, j])
G = np.eye(n)
G[j-1:j+1, j-1:j+1] = np.array([[c, s], [-s, c]])
B = np.dot(G, np.dot(B, G.T))
V = np.dot(V, G)
# 对B的对角线上的元素取绝对值,得到奇异值
s = np.abs(np.diagonal(B))
return U, s, V.T
def givens_rotation(a, b):
"""计算Givens旋转矩阵"""
if b == 0:
c = 1
s = 0
elif abs(b) > abs(a):
t = -a / b
s = 1 / np.sqrt(1 + t**2)
c = s * t
else:
t = -b / a
c = 1 / np.sqrt(1 + t**2)
s = c * t
return c, s
# 示例
A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
U, s, V = svd_bidiagonalization(A)
print("A =\n", A)
print("U =\n", U)
print("s =\n", s)
print("V =\n", V)
```
输出结果:
```
A =
[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
U =
[[-0.14090579 -0.97785588 0.13972062 0. ]
[-0.36908476 -0.07259491 -0.92644467 0. ]
[-0.59726373 0.83266507 0.06279461 0. ]
[-0.82544271 -0.22307502 0.31192944 0. ]]
s =
[2.54620230e+01 4.48186293e-01 1.88983315e-15]
V =
[[-0.23197069 -0.52532209 -0.8186735 ]
[ 0.74182132 0.28600812 -0.16980508]
[ 0.62983291 -0.80080002 0.02796782]]
```
其中,U和V是左奇异矩阵和右奇异矩阵的转置,s是奇异值向量。
阅读全文