双边Jacobi方法求解任意矩阵的SVD的Matlab代码
时间: 2023-12-03 12:46:43 浏览: 111
SVD算法的MATLAB实现代码
5星 · 资源好评率100%
以下是使用双边Jacobi方法求解任意矩阵的SVD的Matlab代码:
```matlab
function [U,S,V] = bidiagonal_svd(A)
% Bidiagonal SVD using Jacobi method
% A: input matrix
% U: left singular vectors
% S: singular values
% V: right singular vectors
[m,n] = size(A);
U = eye(m);
V = eye(n);
% Bidiagonalization using Householder reflection
for k = 1:n
x = A(k:m,k);
[v,beta] = house(x);
A(k:m,k:n) = A(k:m,k:n) - beta*v*(v'*A(k:m,k:n));
U(k:m,:) = U(k:m,:) - beta*v*(v'*U(k:m,:));
if k < n
x = A(k,k+1:n)';
[v,beta] = house(x);
A(k:m,k+1:n) = A(k:m,k+1:n) - beta*(A(k:m,k+1:n)*v)*v';
V(k:n,:) = V(k:n,:) - beta*(V(k:n,:)*v)*v';
end
end
% Singular value decomposition using Jacobi method
tol = 1e-12;
maxiter = 1000;
for iter = 1:maxiter
% Diagonal pivoting
for k = n:-1:2
[c,s] = givens(A(k-1,k-1),A(k,k-1));
A([k-1,k],:) = [c -s; s c]*A([k-1,k],:);
V(:,[k-1,k]) = V(:,[k-1,k])*[c -s; s c]';
end
for k = 1:n-1
[c,s] = givens(A(k,k),A(k,k+1));
A(:,[k,k+1]) = A(:,[k,k+1])*[c -s; s c];
U(:,[k,k+1]) = U(:,[k,k+1])*[c -s; s c]';
end
% Check convergence
if norm(A(n,:)) < tol
break;
end
end
S = diag(A);
end
function [v,beta] = house(x)
% Householder reflection
% x: input vector
% v: Householder vector
% beta: scaling factor
n = length(x);
sigma = x(2:n)'*x(2:n);
v = [1; x(2:n)];
if sigma == 0 && x(1) >= 0
beta = 0;
else
if x(1) >= 0
v(1) = -v(1);
end
beta = 2/(sigma + v(1)^2);
v = v/sqrt(sigma + v(1)^2);
end
end
function [c,s] = givens(a,b)
% Givens rotation
% a,b: input scalars
% c,s: Givens parameters
if b == 0
c = sign(a);
s = 0;
elseif abs(b) > abs(a)
tau = -a/b;
s = 1/sqrt(1 + tau^2);
c = s*tau;
else
tau = -b/a;
c = 1/sqrt(1 + tau^2);
s = c*tau;
end
end
```
该代码使用了Householder反射实现矩阵的双边三角化,然后使用Givens旋转实现奇异值分解。可以通过调用`bidiagonal_svd`函数来求解任意矩阵的SVD。
阅读全文